Skip to content

Latest commit

 

History

History
54 lines (44 loc) · 1.74 KB

README.md

File metadata and controls

54 lines (44 loc) · 1.74 KB

Inversion-based Latent Bayesian Optimization (InvBO)

Official PyTorch implementation of the "Inversion-based Latent Bayesian Optimization". (NeurIPS 2024)

Jaewon Chu*, Jinyoung Park*, Seunghun Lee, Hyunwoo J. Kim†.

Setup

  • Clone repository
git clone https://github.com/mlvlab/InvBO.git
cd InvBO
  • Install Environment
conda env create -f invbo.yml
conda activate invbo
pip install molsets==0.3.1 --no-deps

Run Experiments

This repository provides InvBO applied to CoBO [Lee et al., NeurIPS 2023] for small budget setting.

python exec.py --cuda 0 --task_id [TASK]

Since we predefined the coefficients for VAE loss terms in exec.py provided by CoBO, the available tasks for [TASK] are:

task_id Task Name
med2 Median molecules 2
pdop Perindopril MPO
osmb Osimertinib MPO
adip Amlodipine MPO
zale Zaleplon MPO
valt Valsartan SMARTS
rano Ranolazine MPO

However, we can also run on the remaining Guacamol tasks when we define coefficients for VAE loss terms in exec.py:

task_id Task Name
med1 Median molecules 1
siga Sitagliptin MPO
dhop Deco Hop
shop Scaffold Hop
fexo Fexofenadine MPO

Weights and Biases (wandb) tracking

You can track the optimization process using the wandb library.

You can use wandb tracking by simply setting '--track_with_wandb', 'True' and '--wandb_entity', 'YOUR ENTITRY' in exec.py.

Acknowledgements

This repository is based on CoBO.