forked from pdollar/edges
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathboxesEval.m
108 lines (104 loc) · 5 KB
/
boxesEval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function recall = boxesEval( varargin )
% Perform object proposal bounding box evaluation and plot results.
%
% boxesEval evaluates a set bounding box object proposals on the dataset
% specified by the 'data' parameter (which is generated by boxesData.m).
% The methods are specified by the vector 'names'. For each method the
% boxes must be stored in the file [resDir '/' name '-' data.split]. Each
% file should contain a single cell array 'bbs' of length n, with one set
% of bbs per image, where each matrix row has the format [x y w h score].
% Here score is the confidence of detection but if the boxes are sorted the
% score may be the same for every box. edgeBoxes.m stores results in this
% format by default, other methods can easily be converted to this format.
%
% For every method, evaluation is performed at every threshold in 'thrs'
% and every proposal count in 'cnts'. Two plots may be generated. If
% |cnts|>1 creates a plot with count on x-axis (and plots a separate set of
% curves for each threshold if necessary). If |thrs|>1 creates a plot with
% thresholds on x-axis (and plots a separate set of curves for each count).
%
% USAGE
% recall = boxesEval( opts )
%
% INPUTS
% opts - parameters (struct or name/value pairs)
% .data - ['REQ'] data on which to evaluate (see boxesData.m)
% .names - ['REQ'] string cell array of object proposal methods
% .resDir - ['boxes/'] location for results and evaluation
% .thrs - [.7] IoU threshold(s) to use for evaluation
% .cnts - [...] propsal count(s) to use for evaluation
% .maxn - [inf] maximum number of images to use for evaluation
% .show - [1] figure for plotting results
% .fName - [''] optional filename for saving plots/recall to disk
% .col - [...] color(s) for plotting each method's results
%
% OUTPUTS
% recall - [MxTxK] recall for each count/threshold/method
%
% EXAMPLE
%
% See also edgeBoxesDemo, edgeBoxes, boxesData, bbGt
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar and Larry Zitnick, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
cnts=[1 2 5 10 20 50 100 200 500 1000 2000 5000]; col=cell(100,1);
for i=1:100, col{i}=max(.3,mod([.3 .47 .16]*(i+1),1)); end
dfs={ 'data','REQ', 'names','REQ', 'resDir','boxes/', 'thrs',.7, ...
'cnts',cnts, 'maxn',inf, 'show',1, 'fName','', 'col',col };
o=getPrmDflt(varargin,dfs,1); if(~iscell(o.names)), o.names={o.names}; end
recall=boxesEvalAll(o); if(o.show), plotResult(recall,o); end
end
function recall = boxesEvalAll( o )
% compute and gather all results (caches individual results to disk)
M=length(o.cnts); T=length(o.thrs); K=length(o.names);
gt=o.data.gt; n=min(o.maxn,o.data.n); gt=gt(1:n);
recall=zeros(M,T,K); [ms,ts,ks]=ndgrid(1:M,1:T,1:K);
parfor i=1:M*T*K, m=ms(i); t=ts(i); k=ks(i);
% if evaluation result exists simply load it
rdir=[o.resDir '/eval/' o.names{k} '/' o.data.split '/'];
rnm=[rdir 'N' int2str2(n,5) '-W' int2str2(o.cnts(m),5) ...
'-T' int2str2(round(o.thrs(t)*100),2) '.txt']; %#ok<*PFBNS>
if(exist(rnm,'file')), recall(i)=load(rnm,'-ascii'); continue; end
% perform evaluation if result does not exist
bbs=load([o.resDir '/' o.names{k} '-' o.data.split]); bbs=bbs.bbs;
bbs1=bbs(1:n); for j=1:n, bbs1{j}=bbs1{j}(1:min(end,o.cnts(m)),:); end
[gt1,bbs1]=bbGt('evalRes',gt,bbs1,o.thrs(t));
[~,r]=bbGt('compRoc',gt1,bbs1,1); r=max(r); recall(i)=r;
if(~exist(rdir,'dir')), mkdir(rdir); end; dlmwrite(rnm,r);
end
% display summary statistics
[ts,ks]=ndgrid(1:T,1:K); ms=log(o.cnts); rt=.75;
for i=1:T*K, t=ts(i); k=ks(i); r=recall(:,t,k)'; if(M==1), continue; end
a=find(rt<=r); if(isempty(a)), m=inf; else a=a(1); b=a-1;
m=round(exp((rt-r(b))/(r(a)-r(b))*(ms(a)-ms(b))+ms(b))); end
auc=sum(diff(ms/ms(end)).*(r(1:end-1)+r(2:end))/2);
fprintf('%15s T=%.2f A=%.2f M=%4i R=%.2f\n',...
o.names{k},o.thrs(t),auc,m,max(r));
end
% optionally save results to text file
if(isempty(o.fName)), return; end
d=[o.resDir '/plots/']; if(~exist(d,'dir')), mkdir(d); end
dlmwrite([d o.fName '-' o.data.split '.txt'],squeeze(recall));
end
function plotResult( recall, o )
% plot results
[M,T,K]=size(recall); fSiz={'FontSize',12}; f=o.show;
for type=1:2
if(type==1), xs=o.cnts; else xs=o.thrs; end;
if(length(xs)==1), continue; end; s=[T,M]; M=s(type);
R=recall; if(type==2), R=permute(R,[2 1 3]); end
figure(f); f=f+1; clf; hold on; hs=zeros(M,K);
for i=1:M, for k=1:K, hs(i,k)=plot(xs,R(:,i,k),...
'Color',o.col{k},'LineWidth',3); end; end
s={'# of proposals','IoU'}; xlabel(s{type},fSiz{:});
s={'log','linear'}; set(gca,'XScale',s{type});
ylabel('Detection Rate',fSiz{:}); set(gca,'YTick',0:.2:1);
hold off; axis([min(xs) max(xs) 0 1]); grid on; set(gca,fSiz{:});
set(gca,'XMinorGrid','off','XMinorTic','off');
set(gca,'YMinorGrid','off','YMinorTic','off');
s={'nw','ne'}; legend(hs(1,:),o.names,'Location',s{type});
if(isempty(o.fName)), continue; end; s={'Cnt','IoU'};
savefig([o.resDir '/plots/' s{type} '-' o.data.split '-' o.fName],'png');
end
end