forked from pdollar/edges
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedgesChns.m
45 lines (43 loc) · 1.54 KB
/
edgesChns.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
function [chnsReg,chnsSim] = edgesChns( I, opts )
% Compute features for structured edge detection.
%
% For an introductory tutorial please see edgesDemo.m.
%
% USAGE
% [chnsReg,chnsSim] = edgesChns( I, opts )
%
% INPUTS
% I - [h x w x 3] color input image
% opts - structured edge model options
%
% OUTPUTS
% chnsReg - [h x w x nChannel] regular output channels
% chnsSim - [h x w x nChannel] self-similarity output channels
%
% EXAMPLE
%
% See also edgesDemo, edgesTrain, edgesDetect, gradientMag
%
% Structured Edge Detection Toolbox Version 3.01
% Code written by Piotr Dollar, 2014.
% Licensed under the MSR-LA Full Rights License [see license.txt]
shrink=opts.shrink; nTypes=1; chns=cell(1,opts.nChns); k=0;
if(size(I,3)>3), nTypes=2; Is={I(:,:,1:3),I(:,:,4:end)}; end
for t=1:nTypes
if(nTypes>1), I=Is{t}; end
if(size(I,3)==1), cs='gray'; else cs='luv'; end; I=rgbConvert(I,cs);
Ishrink=imResample(I,1/shrink); k=k+1; chns{k}=Ishrink;
for i = 1:2, s=2^(i-1);
if(s==shrink), I1=Ishrink; else I1=imResample(I,1/s); end
I1 = convTri( I1, opts.grdSmooth );
[M,O] = gradientMag( I1, 0, opts.normRad, .01 );
H = gradientHist( M, O, max(1,shrink/s), opts.nOrients, 0 );
k=k+1; chns{k}=imResample(M,s/shrink);
k=k+1; chns{k}=imResample(H,max(1,s/shrink));
end
end
chns=cat(3,chns{1:k}); assert(size(chns,3)==opts.nChns);
chnSm=opts.chnSmooth/shrink; if(chnSm>1), chnSm=round(chnSm); end
simSm=opts.simSmooth/shrink; if(simSm>1), simSm=round(simSm); end
chnsReg=convTri(chns,chnSm); chnsSim=convTri(chns,simSm);
end