-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
215 lines (168 loc) · 7.27 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 9 09:51:47 2019
@author: mmrra
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
### Loading our train and testing dataset.
train = pd.read_csv("F:\MachineLearning\Datasets\Titanic/Train.csv")
test = pd.read_csv("F:\MachineLearning\Datasets\Titanic/test.csv")
train.head()
###Now we will findout how much data is absent in our training dataset
train.info()
train.isnull().sum()
test.info()
test.isnull().sum()
### Now we will define a function to findout relationship among variable and Target variable
def bar_chart(feature):
survived = train[train['Survived']==1][feature].value_counts()
dead = train[train['Survived']==0][feature].value_counts()
df = pd.DataFrame([survived, dead])
df.index=['Survived', 'Dead']
df.plot(kind = 'bar', stacked=True, figsize=(10, 5))
bar_chart('Pclass')
bar_chart('Sex')
bar_chart('Embarked')
### Now we will combine our train and test dataset
train_test_data=[train, test]
for dataset in train_test_data:
dataset['Title']=dataset['Name'].str.extract('([A-Za-z]+)\.', expand=False)
train['Title'].value_counts()
title_mapping = {"Mr":0, "Miss":1, "Mrs":2, "Master":3, "Dr":3, "Rev":3, "Col":3, "Mlle":3, "Major":3, "Lady":3, "Jonkheer":3, "Countess":3, "Sir":3, "Capt":3, "Don":3, "Ms":3, "Mme":3}
for dataset in train_test_data:
dataset['Title']=dataset['Title'].map(title_mapping)
test['Title'].value_counts()
bar_chart('Title')
### Delete unnecessary feature from dataset
train.drop('Name', axis=1, inplace=True)
test.drop('Name', axis=1, inplace=True)
### Sex mapping
sex_mapping ={"male":0, "female":1}
for dataset in train_test_data:
dataset['Sex']=dataset['Sex'].map(sex_mapping)
bar_chart('Sex')
###Now we will fill the missing value in 'age' with average value
train["Age"].fillna(train.groupby("Title")["Age"].transform("median"), inplace=True)
test["Age"].fillna(test.groupby("Title")["Age"].transform("median"), inplace=True)
train.groupby("Title")["Age"].transform("median")
train.head()
train.info()
### Now we will see which age people more die.
facet=sns.FacetGrid(train, hue="Survived", aspect=4)
facet.map(sns.kdeplot, 'Age', shade= True)
facet.set(xlim=(0, train['Age'].max()))
facet.add_legend()
plt.show()
### Now we will mapping our age child=0, young=1, adult=2, mid_ag=3, senior=4
for dataset in train_test_data:
dataset.loc[dataset['Age']<=16, 'Age']= 0,
dataset.loc[(dataset['Age']>16) & (dataset['Age']<=26) , 'Age']=1,
dataset.loc[(dataset['Age']>26) & (dataset['Age']<=36), 'Age']=2,
dataset.loc[(dataset['Age']>36) & (dataset['Age']<=62), 'Age']=3,
dataset.loc[dataset['Age']>62, 'Age']=4
bar_chart('Age')
### Now we will count from which different class people
Pclass1 = train[train['Pclass']==1]['Embarked'].value_counts()
Pclass2 = train[train['Pclass']==2]['Embarked'].value_counts()
Pclass3 = train[train['Pclass']==3]['Embarked'].value_counts()
df= pd.DataFrame([Pclass1, Pclass2, Pclass3])
df.index=['1st class', '2nd class', '3rd class']
df.plot(kind = 'bar', stacked=True, figsize=(10, 5))
for dataset in train_test_data:
dataset['Embarked']=dataset['Embarked'].fillna('S')
### Now we will mapping embarked
embarked_mapping={"S":0, "C":1, "Q":2}
for dataset in train_test_data:
dataset['Embarked']=dataset['Embarked'].map(embarked_mapping)
train["Fare"].fillna(train.groupby("Pclass")["Fare"].transform("median"), inplace=True)
test["Fare"].fillna(test.groupby("Pclass")["Fare"].transform("median"), inplace=True)
train.head()
### Now we findout the which fare people die much
facet=sns.FacetGrid(train, hue="Survived", aspect=4)
facet.map(sns.kdeplot, 'Fare', shade=True)
facet.set(xlim=(0, train['Fare'].max()))
facet.add_legend()
plt.show()
for dataset in train_test_data:
dataset.loc[dataset['Fare']<=17, 'Fare']=0,
dataset.loc[(dataset['Fare']>17) & (dataset['Fare']<=30), 'Fare']=1,
dataset.loc[(dataset['Fare']>30) & (dataset['Fare']<=100), 'Fare']=2,
dataset.loc[dataset['Fare']>100, 'Fare']=3
train.Cabin.value_counts()
for dataset in train_test_data:
dataset['Cabin']=dataset['Cabin'].str[:1]
Pclass1 = train[train['Pclass']==1]['Cabin'].value_counts()
Pclass2 = train[train['Pclass']==2]['Cabin'].value_counts()
Pclass3 = train[train['Pclass']==3]['Cabin'].value_counts()
df=pd.DataFrame([Pclass1, Pclass2, Pclass3])
df.index=['1st class', '2nd class', '3rd class']
df.plot(kind ='bar', stacked= True, figsize=(10,5))
cabin_mapping={"A":0, "B":0.4, "C":0.8, "D":1.2, "E":1.6, "F":2.0, "G":2.4, "T":2.8}
for dataset in train_test_data:
dataset['Cabin']=dataset['Cabin'].map(cabin_mapping)
train["Cabin"].fillna(train.groupby("Pclass")["Cabin"].transform("median"), inplace=True)
test["Cabin"].fillna(test.groupby("Pclass")["Cabin"].transform("median"), inplace=True)
train["FamilySize"]=train["SibSp"]+train["Parch"]+1
test["FamilySize"]=test["SibSp"]+test["Parch"]+1
facet= sns.FacetGrid(train, hue="Survived", aspect=4)
facet.map(sns.kdeplot, 'FamilySize', shade=True)
facet.set(xlim=(0, train['FamilySize'].max()))
facet.add_legend()
plt.xlim(0)
family_mapping={1: 0, 2: 0.4, 3: 0.8, 4: 1.2, 5: 1.6, 6: 2.0, 7: 2.4, 8: 2.8, 9: 3.2, 10: 3.6, 11: 4.0}
for dataset in train_test_data:
dataset['FamilySize']=dataset['FamilySize'].map(family_mapping)
feature_drop =['Ticket', 'SibSp', 'Parch']
train =train.drop(feature_drop, axis=1)
test = test.drop(feature_drop, axis=1)
#train.to_csv("TrainPP.csv") test.to_csv("TestPP.csv")
train = train.drop(['PassengerId'], axis=1)
train_data=train.drop('Survived', axis=1)
#train.to_csv("trainAfter.csv")
target= train['Survived']
train_data.shape, target.shape
#target.to_csv("targetpp.csv")
###################Now we will take machinelearning model#####################
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
k_fold = KFold(n_splits = 10, shuffle=True, random_state=0)
clf = DecisionTreeClassifier()
scoring ='accuracy'
score = cross_val_score(clf, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
print(round(np.mean(score)*100,2))
###Random forest
clf=RandomForestClassifier(n_estimators = 13)
scoring = 'accuracy'
score = cross_val_score(clf, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
print(round(np.mean(score)*100, 2))
### Support vector machine
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
import warnings
warnings.filterwarnings('ignore')
k_fold = KFold(n_splits = 10, shuffle=True, random_state=0)
support = svm.LinearSVC(random_state=20)
scoring='accuracy'
score = cross_val_score(support, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
print(round(np.mean(score)*100, 2))
###KNN###
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
k_fold = KFold(n_splits = 10, shuffle=True, random_state=0)
# Create KNN classifier
knn = KNeighborsClassifier(n_neighbors = 3)
scoring = 'accuracy'
score = cross_val_score(knn, train_data, target, cv=k_fold, n_jobs=1, scoring=scoring)
print(score)
print(round(np.mean(score)*100, 2))