pip install astra-haystack
install astra-haystack package locally to run integration tests:
Switch Python version to 3.9 (Requires 3.8+ but not 3.12)
pyenv install 3.9
pyenv local 3.9
Local install for the package
pip install -e .
To execute integration tests, add needed environment variables
ASTRA_DB_API_ENDPOINT=<id>
ASTRA_DB_APPLICATION_TOKEN=<token>
and execute
python examples/example.py
Install requirements
pip install -r requirements.txt
Export environment variables
export ASTRA_DB_API_ENDPOINT=
export ASTRA_DB_APPLICATION_TOKEN=
export COLLECTION_NAME=
export OPENAI_API_KEY=
run the python examples
python example/example.py
or
python example/pipeline_example.py
This package includes Astra Document Store and Astra Embedding Retriever classes that integrate with Haystack, allowing you to easily perform document retrieval or RAG with Astra, and include those functions in Haystack pipelines.
Import the Document Store:
from haystack_integrations.document_stores.astra import AstraDocumentStore
from haystack.document_stores.types.policy import DuplicatePolicy
Load in environment variables:
api_endpoint = os.getenv("ASTRA_DB_API_ENDPOINT", "")
token = os.getenv("ASTRA_DB_APPLICATION_TOKEN", "")
collection_name = os.getenv("COLLECTION_NAME", "haystack_vector_search")
Create the Document Store object:
document_store = AstraDocumentStore(
api_endpoint=api_endpoint,
token=token,
collection_name=collection_name,
duplicates_policy=DuplicatePolicy.SKIP,
embedding_dim=384,
)
Then you can use the document store functions like count_document below:
document_store.count_documents()
Create the Document Store object like above, then import and create the Pipeline:
from haystack import Pipeline
pipeline = Pipeline()
Add your AstraEmbeddingRetriever into the pipeline
pipeline.add_component(instance=AstraEmbeddingRetriever(document_store=document_store), name="retriever")
Add other components and connect them as desired. Then run your pipeline:
pipeline.run(...)