-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
330 lines (251 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import argparse
import logging
import string
import sys
from functools import partial
from pathlib import Path
import numpy as np
import pandas as pd
import torch
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import confusion_matrix
from model import CCAPNet
from address import typos
from address.utils import build_vocabulary
from address.proc_gen import TokenCategory
def parse_arguments():
args = argparse.ArgumentParser(description='CCAPNet trainer script.')
args.add_argument('--model-name', action='store', type=str, metavar='STR', required=True,
help='model to load')
args.add_argument('--reset', action='store_true',
help='delete all checkpoints for a model')
args.add_argument('--epochs', action='store', type=int, metavar='INT',
help='number of epochs to run from last checkpoint')
args.add_argument('--batch-size', action='store', type=int, metavar='INT',
help='training batch size')
return args.parse_args()
def process_arguments(args):
model_dir = Path(args.model_name)
# reset flag is used
if args.reset == True and model_dir.is_dir():
response = input("Confirm deletion with 'y' (otherwise exit): ")
if response == 'y':
print(f"Deleting '{model_dir}' directory.")
for child in model_dir.iterdir():
child.unlink()
model_dir.rmdir()
sys.exit(0)
# load latest checkpoint
elif args.reset == False and model_dir.is_dir():
if args.epochs is None:
print("Epochs needed for checkpointed model.")
sys.exit(1)
checkpoints = sorted(model_dir.glob('*.pt'))
return True, model_dir, checkpoints.pop()
# otherwise create a new checkpoint directory
else:
if args.epochs is None or args.batch_size is None:
print("Epochs and batch size needed for new model.")
sys.exit(1)
model_dir.mkdir()
return False, model_dir, None
address_chars = list(string.ascii_uppercase + string.digits + ' ')
label_chars = [str(e.value) for e in TokenCategory]
def chars_to_tensor(s, vocab):
return torch.tensor([vocab[c] for c in s], dtype=torch.long)
class CivicAddressDataset(Dataset):
"""Dataset subclass for address data."""
def __init__(self, csv_file, x_vocab, y_vocab, perturb_fn=None):
self.data = pd.read_csv(
csv_file, names=['x', 'y'], sep='|', dtype='string')
self.x_vocab = x_vocab
self.y_vocab = y_vocab
self.perturb_fn = perturb_fn
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
address = list(self.data.iat[idx, 0])
labels = (self.data.iat[idx, 1]).split(' ')
if self.perturb_fn is not None: # perturbation should occur inplace
self.perturb_fn(address, labels)
x = chars_to_tensor(address, self.x_vocab)
y = chars_to_tensor(labels, self.y_vocab)
l = x.size(0)
return x, y, l
def apply_typos(chars, clf, typo_funcs, rate, rng):
"""Randomly apply typos to an address inplace.
The number of typos is Poisson distributed with parameter `rate`.
Moreover, the typo functions are selected uniformly at random, with
replacement.
"""
repeats = rng.poisson(lam=rate)
#print(f"Repeats: {repeats}")
#print(''.join(chars))
for i in range(repeats):
f = rng.choice(typo_funcs)
#print(f)
f(chars, clf, rng)
#print(''.join(chars))
def construct_batch(samples, x_pad_token, y_pad_token):
"""Collate function for DataLoader."""
x, y, l = list(zip(*samples))
x_padded = pad_sequence(x, batch_first=True, padding_value=x_pad_token)
y_padded = pad_sequence(y, batch_first=True, padding_value=y_pad_token)
lengths = torch.tensor(l, dtype=torch.long)
return x_padded, y_padded, lengths
def compute_batch_accuracy(pred, targ, pad_token):
"""Compute per-character and parser accuracy."""
correct = pred == targ
mask = targ != pad_token
char_accuracy = torch.mean(
correct.logical_and(mask).sum(1) / mask.sum(1))
parser_accuracy = torch.mean(
correct.logical_or(mask.logical_not()).all(1).float()
)
return char_accuracy, parser_accuracy
def compute_confusion_matrix(pred, targ, pad_token, classes):
"""Compute confusion matrix over a batch of predictions."""
pred = pred.flatten()
targ = targ.flatten()
mask = targ != pad_token
pred = pred[mask].cpu()
targ = targ[mask].cpu()
labels = np.arange(classes)
return confusion_matrix(targ, pred, labels=labels)
######################
# SCRIPT STARTS HERE #
######################
if __name__ == '__main__':
args = parse_arguments()
resume, chkpt_dir, last_chkpt_path = process_arguments(args)
# define epoch-independent variables
train_pg_path = 'datasets/train_sequences_pg.csv.gz'
test_pg_path = 'datasets/test_sequences_pg.csv.gz'
test_real_path = 'datasets/test_sequences_real.csv.gz'
x_vocab = build_vocabulary(address_chars)
y_vocab = build_vocabulary(label_chars)
x_pad_token = len(x_vocab)
y_pad_token = len(y_vocab)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
torch.set_default_device(device)
# define model, optimizer and loss
model = CCAPNet(x_pad_token, y_pad_token)
optimizer = torch.optim.RMSprop(model.parameters(), lr=5e-4, weight_decay=5e-5)
loss = torch.nn.CrossEntropyLoss(
ignore_index=y_pad_token, reduction='mean')
if resume: # if loaded, use previous checkpoint state
checkpoint = torch.load(last_chkpt_path)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(f"Model definition:\n{model}")
trainable_params = sum([p.numel() for p in model.parameters() if p.requires_grad])
print(f"Number of trainable parameters: {trainable_params}")
# load datasets
batch_size = args.batch_size if not resume else checkpoint['batch_size']
collate_fn = partial(
construct_batch,
x_pad_token=x_pad_token,
y_pad_token=y_pad_token)
rng = np.random.default_rng()
perturb_fn = partial(
apply_typos,
typo_funcs=[typos.delete, typos.replace, typos.duplicate, typos.swaps],
rate=1.,
rng=rng)
train_pg_data = CivicAddressDataset(train_pg_path, x_vocab, y_vocab, perturb_fn)
test_pg_data = CivicAddressDataset(test_pg_path, x_vocab, y_vocab)
test_real_data = CivicAddressDataset(test_real_path, x_vocab, y_vocab)
train_pg_dataloader = DataLoader(
train_pg_data,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn,
drop_last=True,
generator=torch.Generator(device=device))
test_pg_dataloader = DataLoader(
test_pg_data,
batch_size=batch_size,
collate_fn=collate_fn,
drop_last=True)
test_real_dataloader = DataLoader(
test_real_data,
batch_size=batch_size,
collate_fn=collate_fn,
drop_last=True)
# prepare logger
logging.basicConfig(
level=logging.DEBUG,
format='%(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler(chkpt_dir/'log.txt')
])
# epoch loop
epochs = args.epochs
epoch_offset = 0 if not resume else checkpoint['epoch'] + 1
for t in range(epochs):
T = epoch_offset + t
logging.debug("Starting loop at epoch {:d}".format(T))
# training loop
model.train()
for batch, (x, y, l) in enumerate(train_pg_dataloader):
logits = model(x, l)
logits = torch.transpose(logits, 1, 2)
error = loss(logits, y)
error.backward()
optimizer.step()
optimizer.zero_grad()
# compute per-character and parser accuracy on training batch
pred = logits.detach().argmax(1)
char_acc, pars_acc = compute_batch_accuracy(pred, y, y_pad_token)
logging.debug(
"[TRAIN] batch {:>4d} loss: {:.5f} char acc: {:.2%} parse acc: {:.2%}".format(
batch, error.item(), char_acc, pars_acc))
# test loop
model.eval()
test_pg_char_acc = 0.
test_pg_pars_acc = 0.
test_real_char_acc = 0.
test_real_pars_acc = 0.
confusion_dims = (len(y_vocab), len(y_vocab))
test_pg_confusion = np.zeros(confusion_dims, dtype=np.int64)
test_real_confusion = np.zeros(confusion_dims, dtype=np.int64)
with torch.no_grad():
for batch, (x, y, l) in enumerate(test_pg_dataloader):
logits = model(x, l)
logits = torch.transpose(logits, 1, 2)
pred = logits.argmax(1)
test_pg_confusion += compute_confusion_matrix(pred, y, y_pad_token, len(y_vocab))
char_acc, pars_acc = compute_batch_accuracy(pred, y, y_pad_token)
test_pg_char_acc += char_acc
test_pg_pars_acc += pars_acc
test_pg_char_acc /= len(test_pg_dataloader)
test_pg_pars_acc /= len(test_pg_dataloader)
#test_pg_confusion /= test_pg_confusion.sum()
for batch, (x, y, l) in enumerate(test_real_dataloader):
logits = model(x, l)
logits = torch.transpose(logits, 1, 2)
pred = logits.argmax(1)
test_real_confusion += compute_confusion_matrix(pred, y, y_pad_token, len(y_vocab))
char_acc, pars_acc = compute_batch_accuracy(pred, y, y_pad_token)
test_real_char_acc += char_acc
test_real_pars_acc += pars_acc
test_real_char_acc /= len(test_real_dataloader)
test_real_pars_acc /= len(test_real_dataloader)
#test_real_confusion /= test_real_confusion.sum()
logging.debug(
"[TEST] epoch {:d} PG ca: {:.2%} PG pa: {:.2%} real ca: {:.2%} real pa: {:.2%}".format(
T, test_pg_char_acc, test_pg_pars_acc, test_real_char_acc, test_real_pars_acc))
logging.debug("Ending loop at epoch {:d}".format(T))
# save checkpoint and confusion matrix
confusion_path = chkpt_dir / '{:05d}.npz'.format(T)
chkpt_path = chkpt_dir / '{:05d}.pt'.format(T)
np.savez(confusion_path, pg=test_pg_confusion, real=test_real_confusion)
torch.save({
'epoch' : T,
'batch_size' : batch_size,
'model_state_dict' : model.state_dict(),
'optimizer_state_dict' : optimizer.state_dict(),
}, chkpt_path)
logging.debug("Saved checkpoint to '{}'".format(chkpt_path))