-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_2.py
546 lines (456 loc) · 22.8 KB
/
train_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# coing=utf-8
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import cv2
from time import time
import os, sys
import numpy as np
import scipy.io as sio
import matplotlib.pyplot as plt
import pandas as pd
# import random
import torch
import torch.nn as nn
import torch.utils.data as data
from torch.autograd import Variable as V
import torch.nn.functional as F
from torchvision import transforms, datasets
# from models.unet import UNet
from models.LTGNet import UNet
from models.gt_guide import RebackNet
from models.reback import _Res34_unet, _nonlocal_unet, _Reback_v1, _Reback_v2
from load_data import MyDataset, MyDataset2
from loss import dice_bce_loss, dice_bce_loss2, iou_loss1, iou_loss2, LovaszHingeLoss
from metric import dice_coeff, m_iou
from models.ssim import SSIM
torch.set_num_threads(10)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
# recall
def sensitive(gt, pr):
tp = (pr*gt).sum(1).sum(1).sum(1)
fn = (gt*(1-pr)).sum(1).sum(1).sum(1)
score = (tp+0.01)/(tp+fn+0.01)
return score.mean().numpy()
def precision(gt, pr):
tp = (pr*gt).sum(1).sum(1).sum(1)
fp = ((1-gt)*pr).sum(1).sum(1).sum(1)
score = (tp+0.01)/(tp+fp+0.01)
return score.mean().numpy()
# recall1
def sensitive1(gt, pr):
tp = (pr*gt).sum(1).sum(1).sum(1)
fn = (gt*(1-pr)).sum(1).sum(1).sum(1)
score = (tp+0.01)/(tp+fn+0.01)
return score
def precision1(gt, pr):
tp = (pr*gt).sum(1).sum(1).sum(1)
fp = ((1-gt)*pr).sum(1).sum(1).sum(1)
score = (tp+0.01)/(tp+fp+0.01)
return score
def accuracy(gt, pr):
tp = (pr*gt).sum(1).sum(1).sum(1)
tn = ((1-pr)*(1-gt)).sum(1).sum(1).sum(1)
fp = (pr*(1-gt)).sum(1).sum(1).sum(1)
fn = ((1-pr)*gt).sum(1).sum(1).sum(1)
score = (tp+tn+0.01)/(tp+tn+fp+fn+0.01)
return score.mean().numpy()
def specificity(gt, pr):
tn = ((1-pr)*(1-gt)).sum(1).sum(1).sum(1)
fp = (pr*(1-gt)).sum(1).sum(1).sum(1)
score = (tn+0.01)/(tn+fp+0.01)
return score.mean().numpy()
def f1_score(gt, pr):
precision = precision1(gt, pr)
sensitive = sensitive1(gt, pr)
score = 2*(precision*sensitive)/(precision+sensitive)
return score.mean().numpy()
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1:
nn.init.xavier_normal_(m.weight.data)
nn.init.constant_(m.bias.data, 0.0)
elif classname.find('Linear') != -1:
nn.init.xavier_normal_(m.weight)
nn.init.constant_(m.bias, 0.0)
# 依次计算每一个iteration 轮次的结果, 首先试一下循环1次, 共需要t=2/(4)
# 1. 先是计算了
def compute_loss(pre_loss, pre_final, mask):
loss_all = 0
dice_loss = dice_bce_loss2(batch=False)
ssim_loss = SSIM(window_size=11, size_average=True)
bce_loss = nn.BCELoss(size_average=True)
mask_d1 = F.interpolate(mask, size=[128, 128], mode='nearest')
mask_d2 = F.interpolate(mask, size=[64, 64], mode='nearest')
mask_d3 = F.interpolate(mask, size=[32, 32], mode='nearest')
for i in range(len(pre_loss)):
loss1 = dice_loss(mask, pre_loss[i][0])
# loss2 = dice_loss(mask_d1, pre_loss[i][1])
# loss3 = dice_loss(mask_d2, pre_loss[i][2])
# loss4 = dice_loss(mask_d3, pre_loss[i][3])
loss2 = bce_loss(pre_loss[i][1], mask_d1)
loss3 = bce_loss(pre_loss[i][2], mask_d2)
loss4 = bce_loss(pre_loss[i][3], mask_d3)
# loss2 = dice_loss(mask, F.interpolate(pre_loss[i][1], size=[256, 256], mode='bilinear'))
# loss3 = dice_loss(mask, F.interpolate(pre_loss[i][2], size=[256, 256], mode='bilinear'))
# loss4 = dice_loss(mask, F.interpolate(pre_loss[i][3], size=[256, 256], mode='bilinear'))
# loss1 = dice_loss(mask, pre_loss[i][0]) \
# + 1 - ssim_loss(pre_loss[i][0], mask)
# loss2 = dice_loss(mask, F.interpolate(pre_loss[i][1], size=[256, 256], mode='bilinear')) \
# + 1 - ssim_loss(F.interpolate(pre_loss[i][1], size=[256, 256], mode='bilinear'), mask)
# loss3 = dice_loss(mask, F.interpolate(pre_loss[i][2], size=[256, 256], mode='bilinear')) \
# + 1 - ssim_loss(F.interpolate(pre_loss[i][2], size=[256, 256], mode='bilinear'), mask)
# loss4 = dice_loss(mask, F.interpolate(pre_loss[i][3], size=[256, 256], mode='bilinear')) \
# + 1 - ssim_loss(F.interpolate(pre_loss[i][3], size=[256, 256], mode='bilinear'), mask)
loss_i = loss1+loss2+loss3+loss4
# loss_i = loss1
loss_all += loss_i
loss_final = dice_loss(mask, pre_final)
return loss_all, loss_final
def train_model(train_i, data_i, threshold, order, test_data1, test_data2):
# data_i for training and validation, test_data for testing, 测试的话此数据集就全部用作测试,用all_data
batchsize = 16
i = train_i
# net = _Res34_unet().cuda()
net = _Reback_v2().cuda()
# net = _nonlocal_unet().cuda()
netname = "res"
if data_i == -1:
epoch_num = 100
txt_train = 'FuseDatafold'+str(train_i+1)+'_train.csv'
NAME = 'D2/D23_Res34_unet_'+netname+str(i+1)+'_'+str(order)
# NAME = 'D2/D23_Res34_unet_'+netname+str(i+1)+'_'+str(order)+'1'
NAME2 = 'D2/inter_pic/'
print(NAME)
dataset_train = MyDataset(root='/home/wangke/ultrasound_data2/', txt_path=txt_train, lab_pics=['fuse_data_pic/', 'fuse_data_lab/', 'inter_pic/'], istrain=True, transform=transforms.ToTensor(), target_transform=transforms.ToTensor(), pre_num=0)
txt_validate = 'FuseDatafold'+str(train_i+1)+'_test.csv'
dataset_validate = MyDataset(root='/home/wangke/ultrasound_data2/', txt_path=txt_validate, lab_pics=['fuse_data_pic/', 'fuse_data_lab/', 'inter_pic/'], transform=transforms.ToTensor(), target_transform=transforms.ToTensor(), pre_num=0)
if test_data1 == 205:
txt_test = 'all_data.csv'
dataset_test1 = MyDataset(root='/home/wangke/ultrasound_data163/', txt_path=txt_test, lab_pics=['process_pic_163/', 'process_lab_163/'], transform=transforms.ToTensor(), target_transform=transforms.ToTensor(), pre_num=0)
if test_data2 == 205:
txt_test = 'all_data.csv'
dataset_test2 = MyDataset(root='/home/wangke/ultrasound_data163/', txt_path=txt_test, lab_pics=['process_pic_163/', 'process_lab_163/'], transform=transforms.ToTensor(), target_transform=transforms.ToTensor(), pre_num=0)
if test_data1 == 4:
txt_test = 'all_data2.csv'
dataset_test1 = MyDataset(root='/home/wangke/ultrasound_data4/', txt_path=txt_test, lab_pics=['data_pic/', 'data_lab/'], transform=transforms.ToTensor(), target_transform=transforms.ToTensor(), pre_num=0)
if test_data2 == 4:
txt_test = 'all_data2.csv'
dataset_test2 = MyDataset(root='/home/wangke/ultrasound_data4/', txt_path=txt_test, lab_pics=['data_pic/', 'data_lab/'], transform=transforms.ToTensor(), target_transform=transforms.ToTensor(), pre_num=0)
train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=batchsize, shuffle=True, num_workers=4, pin_memory=True)
validate_loader = torch.utils.data.DataLoader(dataset_validate, batch_size=batchsize, shuffle=False, num_workers=4, pin_memory=True)
test1_loader = torch.utils.data.DataLoader(dataset_test1, batch_size=batchsize, shuffle=False, num_workers=4, pin_memory=True)
test2_loader = torch.utils.data.DataLoader(dataset_test2, batch_size=batchsize, shuffle=False, num_workers=4, pin_memory=True)
num_no = 0
max_numno = 5
mylog = open('models/saved/'+NAME+'.log', 'w')
total_epoch = epoch_num
optimizer = torch.optim.Adam(params=net.parameters(), lr=1e-4, amsgrad=True, eps=1e-8)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
best_validate_score = 0
best_validate_loss = 999
# loss_loss = LovaszHingeLoss()
# loss_loss = dice_bce_loss2(batch=False)
loss_loss = iou_loss2(batch=False)
bce_loss = nn.BCELoss(size_average=True)
save_mid = 0
# ssim_loss = SSIM(window_size=11, size_average=True)
train_loss = []
test_loss2 = []
test2_loss2 = []
validate_loss2 = []
train_dice = []
test_dice = []
test2_dice = []
validate_dice = []
train_miou = []
test_miou = []
test2_miou = []
validate_miou = []
train_sc = 0
for epoch in range(1, total_epoch+1):
total_loss = 0
loss_final_all = 0
data_loader_iter = iter(train_loader)
data_loader_validate = iter(validate_loader)
data_loader_test = iter(test1_loader)
data_loader_test2 = iter(test2_loader)
tic = time()
train_score = 0
train_miou_b = 0
isneedres = False
net.train()
for img, mask, id_img in data_loader_iter:
# print(id_img)
img = V(img.cuda(), requires_grad=False)
mask_v = V(mask.cuda(), requires_grad=False)
# res_v = V(res.cuda(), requires_grad=False)
optimizer.zero_grad()
# out_final, out_res = net(img, isneedres)
# out_final, out_res = net(img)
out_final2, out_res, out_final = net(img)
# loss_all = dice_loss(mask_v, out_final)
loss_all = loss_loss(mask_v, out_final)
loss_step = loss_all
loss_step += loss_loss(mask_v, out_final2)
# print(train_sc-threshold)
#
# if train_sc>threshold:
res_lab = torch.abs(torch.add(mask_v, torch.neg(out_final)))
res_lab = res_lab.detach()
# if save_mid==1:
# for i, id_i in enumerate(id_img):
# cv2.imwrite('models/saved/'+NAME2+id_i, res_lab[i,0,:,:].cpu().data.numpy()*255)
# # plt.imsave('models/saved/'+NAME2+id_i+'.png', res_lab[i,0,:,:].cpu().data.numpy(), cmap='gray')
loss_res = bce_loss(F.interpolate(out_res, size=(256, 256), mode='bilinear'), res_lab)
# if loss_res<0.01:isneedres=True
loss_step +=loss_res
# loss_all, loss_final = compute_loss(out_loss, out_final, mask_v)
loss_step.backward()
optimizer.step()
total_loss += loss_all
# loss_final_all += loss_final
train_score += dice_coeff(mask, out_final.cpu().data, False)
train_miou_b += m_iou(mask, out_final.cpu().data, False)
total_loss = total_loss.cpu().data.numpy()/len(data_loader_iter)
train_score = train_score/len(data_loader_iter)
train_miou_b = train_miou_b/len(data_loader_iter)
test_score = 0
test_loss = 0
test_miou_b = 0
test2_score = 0
test2_loss = 0
test2_miou_b = 0
test_final_loss = 0
validate_score = 0
validate_loss = 0
validate_miou_b = 0
net.eval()
with torch.no_grad():
for img, mask, id_img in data_loader_test:
img = V(img.cuda(), requires_grad=False)
mask_v = V(mask.cuda(), requires_grad=False)
# out_final, out_res = net(img, isneedres)
# out_final, out_res = net(img)
out_final2, out_res, out_final = net(img)
loss_all = loss_loss(mask_v, out_final)
# loss_all += loss_loss(mask_v, out_1)
test_loss += loss_all
test_score += dice_coeff(mask, out_final.cpu().data, False)
test_miou_b += m_iou(mask, out_final.cpu().data, False)
for img, mask, id_img in data_loader_test2:
img = V(img.cuda(), requires_grad=False)
mask_v = V(mask.cuda(), requires_grad=False)
# out_final, out_res = net(img, isneedres)
# out_final, out_res = net(img)
out_final2, out_res, out_final = net(img)
# loss_all += loss_loss(mask_v, out_1)
loss_all = loss_loss(mask_v, out_final)
test2_loss += loss_all
test2_score += dice_coeff(mask, out_final.cpu().data, False)
test2_miou_b += m_iou(mask, out_final.cpu().data, False)
for img, mask, id_img in data_loader_validate:
img = V(img.cuda(), requires_grad=False)
mask_v = V(mask.cuda(), requires_grad=False)
# res_v = V(res.cuda(), requires_grad=False)
# out_final, out_res = net(img, isneedres)
# out_final, out_res = net(img)
out_final2, out_res, out_final = net(img)
loss_all = loss_loss(mask_v, out_final)
# if train_sc>threshold:
# # if save_mid==1:
# # for i, id_i in enumerate(id_img):
# # # plt.imsave('models/saved/'+NAME2+id_i+'.png', res_lab[i,0,:,:].cpu().data.numpy(), cmap='gray')
# # cv2.imwrite('models/saved/'+NAME2+id_i, res_lab[i,0,:,:].cpu().data.numpy()*255)
# res_lab = torch.abs(torch.add(mask_v, torch.neg(out_final)))
# loss_res = bce_loss(out_res, res_lab)
# loss_all += loss_res
validate_loss += loss_all
validate_score += dice_coeff(mask, out_final.cpu().data, False)
validate_miou_b += m_iou(mask, out_final.cpu().data, False)
validate_score = validate_score/len(data_loader_validate)
validate_loss = validate_loss.cpu().data.numpy()/len(data_loader_validate)
validate_miou_b = validate_miou_b/len(data_loader_validate)
test_score = test_score/len(data_loader_test)
test_loss = test_loss.cpu().data.numpy()/len(data_loader_test)
test_miou_b = test_miou_b/len(data_loader_test)
test2_score = test2_score/len(data_loader_test2)
test2_loss = test2_loss.cpu().data.numpy()/len(data_loader_test2)
test2_miou_b = test2_miou_b/len(data_loader_test2)
train_sc = validate_score
if train_sc>threshold:
# if save_mid==2: save_mid=-1
save_mid+=1
# print(train_sc, save_mid)
train_loss.append(total_loss)
test_loss2.append(test_loss)
test2_loss2.append(test2_loss)
validate_loss2.append(validate_loss)
train_dice.append(train_score)
test_dice.append(test_score)
test2_dice.append(test2_score)
validate_dice.append(validate_score)
train_miou.append(train_miou_b)
test_miou.append(test_miou_b)
test2_miou.append(test2_miou_b)
validate_miou.append(validate_miou_b)
scheduler.step()
# if validate_score>best_test_score:
# best_validate_score = validate_score
# torch.save(net, 'models/saved/'+NAME+'.pkl')
# print('saved, ', best_validate_score, file=mylog, flush=True)
# print('saved, ', best_validate_score)
if validate_loss<best_validate_loss:
best_validate_loss = validate_loss
torch.save(net, 'models/saved/'+NAME+'.pkl')
print('saved, ', best_validate_loss, file=mylog, flush=True)
print('saved, ', best_validate_loss)
num_no =0
else:
num_no +=1
if num_no>=max_numno:
num_no =0
net = torch.load('models/saved/'+NAME+'.pkl')
print('loaded, ', best_validate_loss, file=mylog, flush=True)
print('loaded, ', best_validate_loss)
print('********', file=mylog, flush=True)
print('epoch:', epoch, ' time:', int(time() - tic), 'train_loss:', total_loss, 'train_score:', train_score, 'train_miou:', train_miou_b, 'validate_loss:', validate_loss, 'validate_score:', validate_score, 'validate_miou:', validate_miou_b, 'test1_loss:', test_loss, 'test1_score:', test_score, 'test1_miou:', test_miou_b, 'test2_loss:', test2_loss, 'test2_score:', test2_score, 'test2_miou:', test2_miou_b, file=mylog, flush=True)
print('********')
print('epoch:', epoch, ' time:', int(time() - tic), 'train_loss:', total_loss, 'train_score:', train_score, 'train_miou:', train_miou_b, 'validate_loss:', validate_loss, 'validate_score:', validate_score, 'validate_miou:', validate_miou_b, 'test1_loss:', test_loss, 'test1_score:', test_score, 'test1_miou:', test_miou_b, 'test2_loss:', test2_loss, 'test2_score:', test2_score, 'test2_miou:', test2_miou_b)
# plot
# loss
plt.figure()
epochs = range(total_epoch)
plt.plot(epochs, train_loss, 'b', label='train_loss')
plt.plot(epochs, validate_loss2, 'c', label='validate_loss')
plt.plot(epochs, test_loss2, 'r', label='test1_loss')
plt.plot(epochs, test2_loss2, 'g', label='test2_loss')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend(loc="upper right")
plt.savefig('models/saved/'+NAME+'_loss.png')
plt.figure()
plt.plot(epochs, train_dice, 'b', label='train_dice')
plt.plot(epochs, validate_dice, 'c', label='validate_dice')
plt.plot(epochs, test_dice, 'r', label='test1_dice')
plt.plot(epochs, test2_dice, 'g', label='test2_dice')
plt.xlabel('epoch')
plt.ylabel('dice')
plt.legend(loc="lower right")
plt.savefig('models/saved/'+NAME+'_dice.png')
def test_model(train_i, model_path, chose, isvalidate, istrain=False):
'''
root = '/home/wangke/ultrasound_data163/'
img_labs = ['process_pic_163/', 'process_lab_163/']
model_path = 'D205_Res34_unet_res1_0.pkl'
chose = 'D205'
'''
batchsize = 1
i = train_i
if chose=='D205':
root = '/home/wangke/ultrasound_data163/'
img_labs = ['process_pic_163/', 'process_lab_163/']
# txt_test = 'D163N5fold'+str(train_i+1)+'_test.csv'
txt_test = 'all_data.csv'
# net_path = 'models/saved/D205/'+model_path
excel_path = "models/pre_out/D205/"+model_path[:-4]+".xlsx"
save_picpath = 'models/pre_out/D205/pre_pic/'
if chose=='D23':
root = '/home/wangke/ultrasound_data2/'
img_labs = ['fuse_data_pic/', 'fuse_data_lab/']
txt_test = 'FuseDatafold'+str(train_i+1)+'_test.csv' if isvalidate else 'fuse_data.csv'
if istrain:txt_test = 'FuseDatafold'+str(train_i+1)+'_train.csv'
excel_path = "models/pre_out/D2/"+model_path[:-4]+"vali.xlsx" if istrain else "models/pre_out/D2/"+model_path[:-4]+"train.xlsx"
save_picpath = 'models/pre_out/D2/pre_pic/'
if chose=='D4':
root = '/home/wangke/ultrasound_data4/'
img_labs = ['data_pic/', 'data_lab/']
# img_labs = ['process_pic/', 'process_lab/']
# txt_test = 'N5fold'+str(train_i+1)+'_test.csv'
txt_test = 'all_data2.csv'
# net_path = 'models/saved/D3/'+model_path
excel_path = "models/pre_out/D4/"+model_path[:-4]+"test.xlsx"
save_picpath = 'models/pre_out/D4/pre_pic/'
net_path = 'models/saved/'+model_path.split('_')[0][:2]+'/'+model_path
# net_path = 'models/saved/D2/'+model_path
net = torch.load(net_path)
net.eval()
# txt_test = 'D163N5fold'+str(train_i+1)+'_test.csv'
file_list = pd.read_csv(root+txt_test, sep=',',usecols=[1]).values.tolist()
file_list = [i[0] for i in file_list]
trans_tensor = transforms.ToTensor()
dice_all = []
miou_all = []
sen_all = []
ppv_all = []
spe_all = []
f1s_all = []
acc_all = []
outputs = []
for file_i in file_list:
img = cv2.imread(root+img_labs[0]+file_i, cv2.IMREAD_GRAYSCALE)
# img3 = cv2.equalizeHist(img).astype('float32')
img = img.astype('float32')
img /= 255.
img2 = np.exp(-((img-0.5)*(img-0.5))/(2*np.std(img)*np.std(img)))
# img = (img-0.26)/0.14
img = np.array([img, img2])
img = img.transpose(1,2,0)
img_tensor = trans_tensor(img)
img_tensor = img_tensor.unsqueeze(0)
img_tensor = V(img_tensor.cuda())
lab = cv2.imread(root+img_labs[1]+file_i, cv2.IMREAD_GRAYSCALE)
lab = lab.astype('float32')
lab /= 255.
lab_tensor = trans_tensor(lab)
lab_tensor = lab_tensor.unsqueeze(0)
# lab_tensor = V(lab_tensor.cuda())
with torch.no_grad():
out_final2, out_res, out_final = net(img_tensor)
out = out_final.cpu().numpy()
oredr = file_i[:-4]+model_path.split('_')[-1][:-4]
# print(out.shape)
out[out>0.5]=1
out[out<=0.5]=0
plt.imsave(save_picpath+oredr+'.png', out[0,0,:,:], cmap='gray')
# 计算结果
# loss = bce_loss(pre_map, F.interpolate(lab_tensor, size=[128, 128], mode='nearest')) + dice_loss(lab_tensor, pre_map)
out_final[out_final>0.5]=1
out_final[out_final<=0.5]=0
dice_score = float(dice_coeff(lab_tensor, out_final.cpu(), False))
sen_score = float(sensitive(lab_tensor, out_final.cpu()))
ppv_score = float(precision(lab_tensor, out_final.cpu()))
acc_score = float(accuracy(lab_tensor, out_final.cpu()))
spe_score = float(specificity(lab_tensor, out_final.cpu()))
miou_score = float(m_iou(lab_tensor, out_final.cpu(), False))
ff1_score = float(f1_score(lab_tensor, out_final.cpu()))
# print(float(dice_score))
# print((file_i, dice_score, miou_score, sen_score, ppv_score, acc_score, ff1_score, spe_score, 'fold_'+str(i+1)), ', /')
outputs.append((file_i, dice_score, miou_score, sen_score, ppv_score, acc_score, ff1_score, spe_score, 'fold_'+str(i+1)))
dice_all.append(dice_score)
miou_all.append(miou_score)
sen_all.append(sen_score)
ppv_all.append(ppv_score)
acc_all.append(acc_score)
f1s_all.append(ff1_score)
spe_all.append(spe_score)
dice_aver = sum(dice_all)/len(dice_all)
miou_aver = sum(miou_all)/len(miou_all)
sen_aver = sum(sen_all)/len(sen_all)
ppv_aver = sum(ppv_all)/len(ppv_all)
acc_aver = sum(acc_all)/len(acc_all)
f1_aver = sum(f1s_all)/len(f1s_all)
spe_aver = sum(spe_all)/len(spe_all)
print('dice_score', dice_aver, 'miou_score', miou_aver, 'sen_aver', sen_aver, 'ppv_aver', ppv_aver, 'acc_aver', acc_aver, 'f1_aver', f1_aver, 'spe_aver', spe_aver)
df = pd.DataFrame(outputs, columns=['order', 'dice', 'miou', 'sen', 'ppv', 'acc', 'f1', 'spe', 'fold'])
df.to_excel(excel_path,index = False)
if __name__ == '__main__':
for i in range(0,1):
print('train for fold'+str(i+1))
train_model(train_i=i, data_i=-1, threshold=1, order=2, test_data1=205, test_data2=4)
test_model(train_i=i, model_path='D23_Res34_unet_res'+str(i+1)+'_2.pkl', chose='D23', isvalidate=True, istrain=True)
test_model(train_i=i, model_path='D23_Res34_unet_res'+str(i+1)+'_2.pkl', chose='D23', isvalidate=True)
test_model(train_i=i, model_path='D23_Res34_unet_res'+str(i+1)+'_2.pkl', chose='D205', isvalidate=False)
test_model(train_i=i, model_path='D23_Res34_unet_res'+str(i+1)+'_2.pkl', chose='D4', isvalidate=False)
print('train for fold'+str(i+1)+'finish')