-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsod.py
301 lines (257 loc) · 9.77 KB
/
sod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/local/bin/python3
# This script compares the results from Aither's Sod's shock tube simulations to the exact
# solution. The procedure for determining the exact solution is outlined in "Modern Compressible
# Flow" by Anderson.
import numpy as np
import math
from scipy.optimize import fsolve
import matplotlib
import matplotlib.pyplot as plt
matplotlib.rcParams['font.size'] = 18
# function definitions
def SoS(pressure, density, gamma):
return math.sqrt(gamma * pressure / density)
def VelScale(pressure, density):
return math.sqrt(pressure / density)
def NonDimTemperature(pressure, density, gamma):
return pressure * gamma / density
def Temperature(pressure, density, R):
return pressure / (R * density)
def VelExpansion(sos4, position, time, gamma):
return 2. / (gamma + 1.) * (sos4 + position / time)
def SoSExpansion(sos4, position, time, gamma):
vel = VelExpansion(sos4, position, time, gamma)
return sos4 * (1. - 0.5 * (gamma - 1.) * vel / sos4)
def TemperatureExpansion(t4, sos4, position, time, gamma):
vel = VelExpansion(sos4, position, time, gamma)
return t4 * (1. - 0.5 * (gamma - 1.) * vel / sos4)**2.
def PressureExpansion(p4, sos4, position, time, gamma):
vel = VelExpansion(sos4, position, time, gamma)
return p4 * (1. - 0.5 * (gamma - 1.) * vel / sos4)**(2.*gamma/(gamma-1.))
def DensityExpansion(r4, sos4, position, time, gamma):
vel = VelExpansion(sos4, position, time, gamma)
return r4 * (1. - 0.5 * (gamma - 1.) * vel / sos4)**(2./(gamma-1.))
def InRegion4(sos4, position, time):
insideRegion4 = False
vel = position / time
if (vel <= -sos4):
insideRegion4 = True
return insideRegion4
def InExpansion(sos4, v3, sos3, position, time):
insideExpansion = False
vel = position / time
if (vel >= -sos4 and vel <= v3 - sos3):
insideExpansion = True
return insideExpansion
def InRegion3(vp, v3, sos3, position, time):
insideRegion3 = False
vel = position / time
if (vel >= v3 - sos3 and vel <= vp):
insideRegion3 = True
return insideRegion3
def InRegion2(vp, vs, position, time):
insideRegion2 = False
vel = position / time
if (vel >= vp and vel <= vs):
insideRegion2 = True
return insideRegion2
def InRegion1(vs, position, time):
insideRegion1 = False
vel = position / time
if (vel >= vs):
insideRegion1 = True
return insideRegion1
def main():
# -----------------------------------------------------------------------
gamma = 1.4 # ratio of specific heats
R = 287. # ideal gas constant
# high pressure state
p_high = 101325.
r_high = 1.225
v_high = 0.
# low pressure state
p_low = 10132.5
r_low = 0.153125
v_low = 0.
time = 0.1 # time for comparison
num = 1001 # number of points through tube
lend = -0.5 # left end of simulation
rend = 0.5 # right end of simulation
# simulation data files
fmuscl = "muscl_vanalbada_coarse.csv"
ffirst = "first_order_coarse.csv"
fweno = "weno.csv"
# -----------------------------------------------------------------------
# nondimensionalization
# density nondimensionalized by high pressure region density
# pressure nondimensionalized by high pressure region pressure
# velocity nondimensionalized by sqrt(Pinf / Rinf)
# nondim P factor = Pinf; nondim r factor = Rinf
# in sos nondimensionalization P is nondimensionalized by Rinf * Ainf^2
# therefore Pinf = Rinf * Vinf^2
# temperature nondimensionalized by Tinf / gamma because nondimensional
# equation of state substitutes 1/gamma for R
# since velocity was nondimensionlized by sqrt(Pinf/ Rinf) instead of the
# speed of sound (sqrt(gamma * Pinf / Rinf), time must be scaled by gamma as well
nTime = time / gamma
# get simulation data
muscl = np.genfromtxt(fmuscl, skip_header=1, delimiter=",")
# nondimensionalize simulation data
muscl[:,0] /= r_high
muscl[:,2] /= p_high
muscl[:,3] /= Temperature(p_high, r_high, R) / gamma
muscl[:,4] /= VelScale(p_high, r_high)
first = np.genfromtxt(ffirst, skip_header=1, delimiter=",")
first[:,0] /= r_high
first[:,2] /= p_high
first[:,3] /= Temperature(p_high, r_high, R) / gamma
first[:,4] /= VelScale(p_high, r_high)
weno = np.genfromtxt(fweno, skip_header=1, delimiter=",")
weno[:,0] /= r_high
weno[:,2] /= p_high
weno[:,3] /= Temperature(p_high, r_high, R) / gamma
weno[:,4] /= VelScale(p_high, r_high)
# exact data
# left state (high pressure)
r4 = r_high / r_high
p4 = p_high / p_high
t4 = NonDimTemperature(p4, r4, gamma)
v4 = v_high
# right state (low pressure)
r1 = r_low / r_high
p1 = p_low / p_high
t1 = NonDimTemperature(p1, r1, gamma)
v1 = v_low
gm1 = gamma - 1.
gp1 = gamma + 1.
x = np.linspace(lend, rend, num)
# calculate p2/p1
a1 = SoS(p1, r1, gamma)
a4 = SoS(p4, r4, gamma)
func = lambda p2_p1 : p4/p1 - p2_p1 * (1. - (gm1 * a1/a4 * (p2_p1 - 1.)) /
math.sqrt(2.*gamma * (2.*gamma + gp1 * (p2_p1 - 1.))))**(-2.*gamma/gm1)
# calculate state at region 2
p2 = p1 * fsolve(func, 1.0)
t2 = t1 * p2/p1 * (gp1/gm1 + p2/p1) / (1. + (gp1/gm1) * (p2/p1))
r2 = r1 * (1. + (gp1/gm1) * (p2/p1)) / (gp1/gm1 + p2/p1)
# calcualte velocity ahead of shock relative to wave
vs = a1 * math.sqrt(gp1/(2.*gamma) * (p2/p1 - 1.) + 1.)
# calculate velocity of contact wave
vp = a1/gamma * (p2/p1 - 1.) * math.sqrt((2.*gamma/gp1) / (p2/p1 + gm1/gp1))
v2 = vp
a2 = SoS(p2, r2, gamma)
# calculate state at region 3
v3 = v2
p3 = p4 * (p2/p1) / (p4/ p1)
r3 = r4 * (p3/p4)**(1./gamma)
t3 = t4 * (p3/p4)**(gm1/gamma)
a3 = SoS(p3, r3, gamma)
# assign states
density = np.zeros(num)
pressure = np.zeros(num)
temperature = np.zeros(num)
velocity = np.zeros(num)
regions = np.zeros(num)
for ii in range(0, num):
if (InRegion1(vs, x[ii], nTime)):
density[ii] = r1
pressure[ii] = p1
temperature[ii] = t1
velocity[ii] = v1
regions[ii] = 1
elif (InRegion2(vp, vs, x[ii], nTime)):
density[ii] = r2
pressure[ii] = p2
temperature[ii] = t2
velocity[ii] = v2
regions[ii] = 2
elif (InRegion3(vp, v3, a3, x[ii], nTime)):
density[ii] = r3
pressure[ii] = p3
temperature[ii] = t3
velocity[ii] = v3
regions[ii] = 3
elif (InExpansion(a4, v3, a3, x[ii], nTime)):
density[ii] = DensityExpansion(r4, a4, x[ii], nTime, gamma)
pressure[ii] = PressureExpansion(p4, a4, x[ii], nTime, gamma)
temperature[ii] = TemperatureExpansion(t4, a4, x[ii], nTime, gamma)
velocity[ii] = VelExpansion(a4, x[ii], nTime, gamma)
regions[ii] = 3.5
elif (InRegion4(a4, x[ii], nTime)):
density[ii] = r4
pressure[ii] = p4
temperature[ii] = t4
velocity[ii] = v4
regions[ii] = 4
else:
print("ERROR: Region not found!!!")
print("Position:", x[ii])
# plot results
x = x + 0.5
legend = ["Exact", "First", "MUSCL", "WENO"]
fig, ax = plt.subplots(2, 2, figsize=(12,8))
fig.subplots_adjust(top=0.75)
ax[0,0].plot(x, density, 'k', lw=2)
ax[0,0].plot(first[:,-3], first[:,0], 'g', lw=2)
ax[0,0].plot(muscl[:,-3], muscl[:,0], 'r', lw=2)
ax[0,0].plot(weno[:,-3], weno[:,0], 'b', lw=2)
ax[0,0].grid('on')
ax[0,0].set_xlabel("Position (m)")
ax[0,0].set_ylabel("Normalized Density")
ax[0,0].set_xlim([x[0], x[-1]])
ax[0,0].set_ylim([0, 1.1])
leg = ax[0,0].legend(legend, loc='best')
leg.draggable()
ax[0,1].plot(x, pressure, 'k', lw=2)
ax[0,1].plot(first[:,-3], first[:,2], 'g', lw=2)
ax[0,1].plot(muscl[:,-3], muscl[:,2], 'r', lw=2)
ax[0,1].plot(weno[:,-3], weno[:,2], 'b', lw=2)
ax[0,1].grid('on')
ax[0,1].set_xlabel("Position (m)")
ax[0,1].set_ylabel("Normalized Pressure")
ax[0,1].set_xlim([x[0], x[-1]])
ax[0,1].set_ylim([0, 1.1])
leg = ax[0,1].legend(legend, loc='best')
leg.draggable()
ax[1,0].plot(x, temperature, 'k', lw=2)
ax[1,0].plot(first[:,-3], first[:,3], 'g', lw=2)
ax[1,0].plot(muscl[:,-3], muscl[:,3], 'r', lw=2)
ax[1,0].plot(weno[:,-3], weno[:,3], 'b', lw=2)
ax[1,0].grid('on')
ax[1,0].set_xlabel("Position (m)")
ax[1,0].set_ylabel("Normalized Temperature")
ax[1,0].set_xlim([x[0], x[-1]])
ax[1,0].set_ylim([0.7, 1.7])
leg = ax[1,0].legend(legend, loc='best')
leg.draggable()
ax[1,1].plot(x, velocity, 'k', lw=2)
ax[1,1].plot(first[:,-3], first[:,4], 'g', lw=2)
ax[1,1].plot(muscl[:,-3], muscl[:,4], 'r', lw=2)
ax[1,1].plot(weno[:,-3], weno[:,4], 'b', lw=2)
ax[1,1].grid('on')
ax[1,1].set_xlabel("Position (m)")
ax[1,1].set_ylabel("Normalized Velocity")
ax[1,1].set_xlim([x[0], x[-1]])
ax[1,1].set_ylim([0, 1])
leg = ax[1,1].legend(legend, loc='best')
leg.draggable()
plt.suptitle("Shock Tube at Nondimensional Time: {}".format(time), y=1.0)
plt.tight_layout()
plt.show()
fig, ax = plt.subplots(1, 1, figsize=(12,8))
fig.subplots_adjust(top=0.75)
ax.plot(x, density, 'k', lw=2)
ax.plot(first[:,-3], first[:,0], 'g', lw=2)
ax.plot(muscl[:,-3], muscl[:,0], 'r', lw=2)
ax.plot(weno[:,-3], weno[:,0], 'b', lw=2)
ax.grid('on')
ax.set_xlabel("Position (m)")
ax.set_ylabel("Normalized Density")
ax.set_xlim([0.3, 0.7])
ax.set_ylim([0, 1.1])
leg = ax.legend(legend, loc='best')
leg.draggable()
plt.tight_layout()
plt.show()
if __name__ == "__main__":
main()