-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultigrid.py
executable file
·459 lines (401 loc) · 16.1 KB
/
multigrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#!/usr/bin/python3
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import time
mpl.rcParams["font.size"] = 20
def Distance(a, b):
return np.linalg.norm(a - b)
def LinearInterpCoeff(x0, x1, x):
diff = x1 - x0
rdist = 1.0 / np.sqrt(np.dot(diff, diff))
norm = diff * rdist
return np.dot(x - x0, norm) * rdist
def BilinearInterpCoeffs(x0, x1, x2, x3, x):
coeffs = np.zeros((3))
coeffs[0] = LinearInterpCoeff(x0, x1, x)
x4 = LinearInterp(x0, x1, coeffs[0])
coeffs[1] = LinearInterpCoeff(x2, x3, x)
x5 = LinearInterp(x2, x3, coeffs[1])
coeffs[2] = LinearInterpCoeff(x4, x5, x)
return coeffs
def LinearInterp(x0, x1, coeff):
return x0 * (1.0 - coeff) + coeff * x1
def BilinearInterp(d0, d1, d2, d3, coeffs):
# 2 linear interpolations to convert to 1D
d4 = LinearInterp(d0, d1, coeffs[0])
d5 = LinearInterp(d2, d3, coeffs[1])
# 1 linear interpolation to complete trilinear interpolation
df = LinearInterp(d4, d5, coeffs[2])
return df
def QuadraticInterp(x0, x1, x2, d0, d1, d2, x, i):
c0 = ((x[i] - x1[i]) * (x[i] - x2[i])) / ((x0[i] - x1[i]) * (x0[i] - x2[i]))
c1 = ((x[i] - x0[i]) * (x[i] - x2[i])) / ((x1[i] - x0[i]) * (x1[i] - x2[i]))
c2 = ((x[i] - x0[i]) * (x[i] - x1[i])) / ((x2[i] - x0[i]) * (x2[i] - x1[i]))
if i == 0:
loc = np.array([x[i], x0[1]])
else:
loc = np.array([x0[0], x[i]])
return c0 * d0 + c1 * d1 + c2 * d2, loc
def BiquadraticInterp(xsw, xs, xse, xw, xc, xe, xnw, xn, xne, sw, s, se, w, c, \
e, nw, n, ne, x):
lower, xl = QuadraticInterp(xsw, xs, xse, sw, s, se, x, 0)
middle, xm = QuadraticInterp(xw, xc, xe, w, c, e, x, 0)
upper, xu = QuadraticInterp(xnw, xn, xne, nw, n, ne, x, 0)
interp, _ = QuadraticInterp(xl, xm, xu, lower, middle, upper, x, 1)
return interp
def GaussSeidel(matrix, rhs, sweeps):
# matrix BCs should already be set, so loop over interior only
for _ in range(0, sweeps):
# loop over interior solution
for xx in range(1, matrix.shape[0] - 1):
for yy in range(1, matrix.shape[1] - 1):
matrix[xx, yy] = 0.25 * (rhs[xx, yy] + \
matrix[xx - 1, yy] + matrix[xx + 1, yy] + \
matrix[xx, yy - 1] + matrix[xx, yy + 1])
return matrix
def Laplacian(solution, xx, yy):
return 4.0 * solution[xx,yy] - solution[xx-1,yy] - \
solution[xx + 1, yy] - solution[xx, yy - 1] - \
solution[xx, yy + 1]
def Residual(sol, forcing, nu, area):
residual = np.zeros(forcing.shape)
# loop over cells and calculate residual
for xx in range(0, residual.shape[0]):
for yy in range(0, residual.shape[1]):
residual[xx, yy] = forcing[xx, yy] - \
nu * Laplacian(sol, xx + 1, yy + 1) / area
return residual
def CellsToNodes(cells, haveGhosts):
# initialize nodal data
if haveGhosts:
nx = cells.shape[0] - 1
ny = cells.shape[1] - 1
else:
nx = cells.shape[0] + 1
ny = cells.shape[1] + 1
nodes = np.zeros((nx, ny))
if not haveGhosts:
# assign corners
nodes[0, 0] = cells[0, 0]
nodes[-1, 0] = cells[-1, 0]
nodes[0, -1] = cells[0, -1]
nodes[-1, -1] = cells[-1, -1]
# assign edges
for xx in range(1, nx - 1):
nodes[xx, 0] = 0.5 * (cells[xx, 0] + cells[xx - 1, 0])
nodes[xx, -1] = 0.5 * (cells[xx, -1] + cells[xx - 1, -1])
for yy in range(1, ny - 1):
nodes[0, yy] = 0.5 * (cells[0, yy] + cells[0, yy - 1])
nodes[-1, yy] = 0.5 * (cells[-1, yy] + cells[-1, yy - 1])
# loop over interior nodes
for xx in range(1, nx - 1):
for yy in range(1, ny - 1):
nodes[xx, yy] = 0.25 * (cells[xx - 1, yy] + cells[xx, yy] + \
cells[xx - 1, yy - 1] + cells[xx, yy - 1])
else:
# loop over all nodes
for xx in range(1, nx + 1):
for yy in range(1, ny + 1):
nodes[xx - 1, yy - 1] = 0.25 * (cells[xx - 1, yy] + cells[xx, yy] + \
cells[xx - 1, yy - 1] + cells[xx, yy - 1])
return nodes
def HeatFunction(relCoords, temp):
#return 0.5 * temp * (np.sin(np.pi * relCoords[:,0]) + 1.0)
return 0.5 * temp * relCoords[:,0] + 0.5 * temp
#return np.exp(relCoords[:,0]) * np.exp(-2.0 * relCoords[:,1])
class gridLevel:
def __init__(self, xc, yc, nu, cornerTemp):
xNum = len(xc)
yNum = len(yc)
self.numNodesX = xNum
self.numNodesY = yNum
self.anchor = np.array([xc[0], yc[0]])
self.relCoords = np.zeros((xNum, yNum, 2))
self.coords = np.zeros((xNum, yNum, 2))
for xx in range(0, xNum):
for yy in range(0, yNum):
self.coords[xx, yy, :] = [xc[xx], yc[yy]]
self.relCoords[xx, yy,:] = self.coords[xx, yy,:] - self.anchor
xlen = xc[-1] - xc[0]
ylen = yc[-1] - yc[0]
self.relCoords[:, :, 0] /= xlen
self.relCoords[:, :, 1] /= ylen
self.dx = xc[1] - xc[0]
self.dy = yc[1] - yc[0]
self.area = self.dx * self.dy
self.centers = np.zeros((xNum + 1, yNum + 1, 2))
self.relCenters = np.zeros((xNum + 1, yNum + 1, 2))
xcc = np.linspace(xc[0] - self.dx / 2.0, xc[-1] + self.dx / 2.0, xNum + 1)
ycc = np.linspace(yc[0] - self.dy / 2.0, yc[-1] + self.dy / 2.0, yNum + 1)
for xx in range(0, xNum + 1):
for yy in range(0, yNum + 1):
self.centers[xx, yy, :] = [xcc[xx], ycc[yy]]
self.relCenters[xx, yy,:] = self.centers[xx, yy,:] - self.anchor
self.relCenters[:,:, 0] /= xlen
self.relCenters[:,:, 1] /= ylen
self.nu = nu
self.cornerTemp = cornerTemp
self.solution = np.zeros((xNum + 1, yNum + 1))
self.forcing = np.zeros((xNum - 1, yNum - 1))
def NumNodes(self):
return self.numNodesX * self.numNodesY
def NumCells(self):
return (self.numNodesX - 1) * (self.numNodesY - 1)
def AssignBCs(self, data, isSolution):
if isSolution:
return self.AssignSolutionBCs(data)
else:
return self.AssignCorrectionBCs(data)
def AssignCorrectionBCs(self, corr):
rhs = self.Rhs()
corr[0,:] = rhs[0,:]
corr[-1,:] = rhs[-1,:]
corr[:, 0] = rhs[:, 0]
corr[:,-1] = rhs[:,-1]
return corr
def AssignSolutionBCs(self, sol):
sol[0, :] = HeatFunction(self.relCenters[0, :], self.cornerTemp)
sol[-1, :] = HeatFunction(self.relCenters[-1, :], self.cornerTemp)
sol[:, 0] = HeatFunction(self.relCenters[:, 0], self.cornerTemp)
sol[:, -1] = HeatFunction(self.relCenters[:, -1], self.cornerTemp)
return sol
def Rhs(self):
rhs = np.zeros((self.forcing.shape[0] + 2, self.forcing.shape[1] + 2))
rhs[1:-1, 1:-1] = self.area * self.forcing
# assign edges
rhs[0, 1:-1] = rhs[1, 1:-1]
rhs[-1, 1:-1] = rhs[-2, 1:-1]
rhs[1:-1, 0] = rhs[1:-1, 1]
rhs[1:-1, -1] = rhs[1:-1, -2]
# assign corners
rhs[0, 0] = 0.5 * (rhs[0, 1] + rhs[1, 0])
rhs[-1, -1] = 0.5 * (rhs[-1, -2] + rhs[-2, -1])
rhs[0, -1] = 0.5 * (rhs[0, -2] + rhs[1, -1])
rhs[-1, 0] = 0.5 * (rhs[-2, 0] + rhs[-1, 1])
return rhs
def CalcResidual(self):
# assign BCs
self.solution = self.AssignBCs(self.solution, True)
return Residual(self.solution, self.forcing, self.nu, self.area)
def ToNodes(self):
# initialize nodal solution
nodalSolution = np.zeros((self.numNodesX, self.numNodesY))
# assign boundary conditions
nodalSolution[0,:] = HeatFunction(self.relCoords[0,:], self.cornerTemp)
nodalSolution[-1,:] = HeatFunction(self.relCoords[-1,:], self.cornerTemp)
nodalSolution[:, 0] = HeatFunction(self.relCoords[:,0], self.cornerTemp)
nodalSolution[:, -1] = HeatFunction(self.relCoords[:,-1], self.cornerTemp)
# loop over interior nodes
for xx in range(1, self.numNodesX - 1):
for yy in range(1, self.numNodesY - 1):
nodalSolution[xx, yy] = 0.25 * (self.solution[xx + 1, yy] + \
self.solution[xx, yy] + self.solution[xx + 1, yy + 1] + \
self.solution[xx, yy + 1])
return nodalSolution
def EdgeSolution(self, xx, yy):
# assign boundary conditions
north = 0.5 * (self.solution[xx, yy] + self.solution[xx, yy + 1])
south = 0.5 * (self.solution[xx, yy] + self.solution[xx, yy - 1])
east = 0.5 * (self.solution[xx, yy] + self.solution[xx + 1, yy])
west = 0.5 * (self.solution[xx, yy] + self.solution[xx - 1, yy])
return north, south, east, west
def EdgeCoords(self, xx, yy):
# assign boundary conditions
north = 0.5 * (self.centers[xx, yy, :] + self.centers[xx, yy + 1, :])
south = 0.5 * (self.centers[xx, yy, :] + self.centers[xx, yy - 1, :])
east = 0.5 * (self.centers[xx, yy, :] + self.centers[xx + 1, yy, :])
west = 0.5 * (self.centers[xx, yy, :] + self.centers[xx - 1, yy, :])
return north, south, east, west
def PlotCenter(self):
fig, ax = plt.subplots(figsize=(12, 8))
plt.xlabel("X (m)")
plt.ylabel("Y (m)")
plt.title("Temperature Contour")
cf = ax.contourf(self.centers[1:-1,1:-1, 0], self.centers[1:-1,1:-1, 1], \
self.solution[1:-1,1:-1])
cbar = fig.colorbar(cf)
cbar.ax.set_ylabel("Temperature (K)")
ax.grid(True)
plt.tight_layout()
plt.show()
def PlotNode(self, ax, title):
ax.set_xlabel("X (m)")
ax.set_ylabel("Y (m)")
ax.set_title(title)
nodalSolution = self.ToNodes()
cf = ax.contourf(self.coords[:,:, 0], self.coords[:,:, 1], nodalSolution, \
levels=np.linspace(np.min(nodalSolution), np.max(nodalSolution), 11))
cbar = plt.colorbar(cf, ax=ax)
cbar.ax.set_ylabel("Temperature (K)")
ax.grid(True)
def Print(self):
print("CELL CENTER SOLUTION")
print(self.solution)
print("NODAL SOLUTION")
print(self.ToNodes())
class mgSolution:
def __init__(self, simData):
self.numLevel = simData.gridLevels
self.cycleType = simData.cycleType
self.sweeps = 5
self.preRelaxationSweeps = 2
self.postRelaxationSweeps = 1
xNum = len(simData.xc)
yNum = len(simData.yc)
self.levels = []
for ll in range(0, simData.gridLevels):
xn = xNum
yn = yNum
if ll > 0:
xn = xNum // 2 ** ll + 1
yn = yNum // 2 ** ll + 1
xc = np.linspace(simData.xc[0], simData.xc[-1], xn)
yc = np.linspace(simData.yc[0], simData.yc[-1], yn)
grid = gridLevel(xc, yc, simData.nu, simData.cornerTemp)
self.levels.append(grid)
self.prolongationCoeffs = []
for ll in range(0, simData.gridLevels - 1):
coeffs = np.zeros((self.levels[ll].centers.shape[0],
self.levels[ll].centers.shape[0], 3))
# use bilinear interpolation coeffs
for xx in range(1, coeffs.shape[0] - 1):
for yy in range(1, coeffs.shape[1] - 1):
xc = (xx - 1) // 2
yc = (yy - 1) // 2
coeffs[xx, yy] = BilinearInterpCoeffs(\
self.levels[ll + 1].coords[xc, yc], \
self.levels[ll + 1].coords[xc + 1, yc], \
self.levels[ll + 1].coords[xc, yc + 1], \
self.levels[ll + 1].coords[xc + 1, yc + 1], \
self.levels[ll].centers[xx, yy])
self.prolongationCoeffs.append(coeffs)
def CycleIndex(self):
ind = 1
if self.cycleType == "W":
ind = 2
return ind
def PlotCenter(self):
self.levels[0].PlotCenter()
def PlotNode(self, ax, title):
self.levels[0].PlotNode(ax, title)
def Print(self):
self.levels[0].Print()
def ResidNorm(self):
r = self.levels[0].CalcResidual()[:]
resid = np.linalg.norm(r) / np.sqrt(len(r))
return resid, np.max(np.abs(r))
def Restriction(self, ll, fine, useAreaFactor):
# fine to coarse transfer
# full weighting of cells
# integral preserving so area factor is needed
factor = 1.0
if useAreaFactor:
factor = self.levels[ll].area / self.levels[ll + 1].area
coarse = np.zeros(self.levels[ll + 1].forcing.shape)
for xx in range(0, coarse.shape[0]):
for yy in range(0, coarse.shape[1]):
coarse[xx, yy] = factor * 0.25 * \
(fine[2 * xx, 2 * yy] + fine[2 * xx + 1, 2 * yy] +
fine[2 * xx, 2 * yy + 1] + fine[2 * xx + 1, 2 * yy + 1])
return coarse
def Prolongation(self, ll, coarseCorrection, fine, cummulative):
# coarse to fine transfer
# solves the error equation - coarse grid error "prolonged" to fine grid
# convert solution to node
if cummulative:
cc = CellsToNodes(coarseCorrection, True)
else:
cc = coarseCorrection
correction = np.zeros(self.levels[ll - 1].solution.shape)
# use bilinear interpolation
for xx in range(1, correction.shape[0] - 1):
for yy in range(1, correction.shape[1] - 1):
xc = (xx - 1) // 2
yc = (yy - 1) // 2
correction[xx, yy] = BilinearInterp(\
cc[xc, yc], cc[xc + 1, yc], cc[xc, yc + 1], cc[xc + 1, yc + 1], \
self.prolongationCoeffs[ll - 1][xx, yy, :])
if cummulative:
fine += correction
else:
fine = correction
self.levels[ll-1].AssignBCs(fine, True)
return fine
def HighOrderInterp(self, cl):
fl = cl - 1
cNodes = self.levels[cl].ToNodes()
for xx in range(1, self.levels[fl].solution.shape[0] - 1):
for yy in range(1, self.levels[fl].solution.shape[1] - 1):
xc = (xx - 1) // 2
yc = (yy - 1) // 2
north, south, east, west = self.levels[cl].EdgeSolution(xc, yc)
pNorth, pSouth, pEast, pWest = self.levels[cl].EdgeCoords(xc, yc)
center = self.levels[cl].solution[xc, yc]
pCenter = self.levels[cl].centers[xc, yc, :]
sw = cNodes[xc, yc]
se = cNodes[xc + 1, yc]
nw = cNodes[xc, yc + 1]
ne = cNodes[xc + 1, yc + 1]
pSw = self.levels[cl].coords[xc, yc, :]
pSe = self.levels[cl].coords[xc + 1, yc, :]
pNw = self.levels[cl].coords[xc, yc + 1, :]
pNe = self.levels[cl].coords[xc + 1, yc + 1, :]
quad = BiquadraticInterp(pSw, pSouth, pSe, \
pWest, pCenter, pEast, pNw, pNorth, pNe, sw, south, se, west, \
center, east, nw, north, ne, self.levels[fl].centers[xx, yy,:])
self.levels[fl].solution[xx, yy] = quad
def CycleAtLevel(self, fl, sol, isSolution):
self.levels[fl].AssignBCs(sol, isSolution)
rhs = self.levels[fl].Rhs()
if fl == self.numLevel - 1:
# at coarsest level - recursive base case
sol = GaussSeidel(sol, rhs, self.sweeps)
else:
# pre-relaxation at fine level
sol = GaussSeidel(sol, rhs, self.preRelaxationSweeps)
# coarse grid correction
r = Residual(sol, self.levels[fl].forcing, \
self.levels[fl].nu, self.levels[fl].area)
cl = fl + 1
self.levels[cl].forcing = self.Restriction(fl, r, True)
# recursive call to next coarse level
coarseCorrection = np.zeros((self.levels[cl].solution.shape))
for _ in range(0, self.CycleIndex()):
coarseCorrection = self.CycleAtLevel(cl, coarseCorrection, False)
# interpolate coarse level correction
sol = self.Prolongation(cl, coarseCorrection, sol, True)
# post-relaxation at fine level
sol = GaussSeidel(sol, rhs, self.postRelaxationSweeps)
return sol
def MultigridCycle(self):
self.CycleAtLevel(0, self.levels[0].solution, True)
def MultigridFCycle(self):
# smooth and restrict down to coarsest grid
for level in range(0, self.numLevel - 1):
#sol = self.levels[level].solution
# pre-relaxation at fine level
self.levels[level].solution = GaussSeidel(self.levels[level].solution, self.levels[level].Rhs(), self.preRelaxationSweeps)
# coarse grid correction
r = Residual(self.levels[level].solution, self.levels[level].forcing, \
self.levels[level].nu, self.levels[level].area)
cl = level + 1
self.levels[cl].forcing = self.Restriction(level, r, True)
self.FullMultigridCycle()
def FullMultigridCycle(self):
# DEBUG
#for level in range(0, self.numLevel):
# self.levels[level].forcing *= 1.0
#for level in range(0, self.numLevel - 1):
# interp = self.Restriction(level, self.levels[level].forcing, False)
# self.levels[level + 1].forcing = interp
# start at coarest grid and obtain solution
# DEBUG - should do V cycle at finest grid?
for level in range(self.numLevel - 1, -1, -1):
self.CycleAtLevel(level, self.levels[level].solution, True)
# interpolate solution at level to next finest grid
if level > 0:
self.HighOrderInterp(level)
#nodalSolution = self.levels[level].ToNodes()
#self.levels[level - 1].solution = self.Prolongation(
# level, nodalSolution, self.levels[level - 1].solution, False)