-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_features.py
156 lines (138 loc) · 15.8 KB
/
plot_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import random
import torch
import matplotlib.pyplot as plt
env_name = "Acrobot-v1"
saved_obs = torch.load("../results/Classic_Control/" + env_name + "/gru_32_hx_(4,4)_bgru/observations_final.pt", map_location=torch.device('cpu'))
# obs_sequence = [0,1,0,2,3,1,0,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,3,1,0,2,4,2,4,2,3,1,0,2,3,1,0,1,0,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,2,4,0,2,3,1,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,0,2,3,1,2,4,2,4,0,2,3,1,2,4,2,4,0,1,2,3,1,0,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,2,4,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,0,1,0,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,4,2,3,1,0,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,0,1,2,4,2,4,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,0,1,0,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,0,1,0,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,0,1,0,2,3,1,0,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,0,1,0,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,0,2,3,1,2,4,2,4,0,2,3,1,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,0,2,3,1,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,3,1,0,2,4,2,3,1,0,2,4,2,4,2,3,1,0,2,4,2]
obs_sequence = [0,0,0,0,0,0,1,2,2,2,2,3,0,1,4,4,4,0,1,2,2,2,2,2,5,4,4,4,4,0,1,2,2,2,2,2,6,0,1,7,4,4,4,8,2,2,2,2,2,2,2,9,4,4,4,4,4,4,10,0,1,2,2,2,2,2,6,0,1,7,4,9,5,5,5,5,5,5,5,5,5,5,11,12,1,2,2,2,2,2,2,2,0,0,0,0,0,0,1,2,2,2,2,3,0,1,4,4,4,0,1,2,2,2,2,2,9,4,4,4,4,0,1,2,2,2,2,2,2,5,4,4,4,4,4,8,2,2,2,2,2,2,2,6,0,1,7,4,4,4,0,1,2,2,2,2,2,2,2,2,2,13,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,1,2,2,2,2,3,14,4,4,4,0,1,2,2,2,2,2,9,4,4,4,4,0,1,2,2,2,2,2,2,5,4,4,4,4,4,0,1,2,2,2,2,2,2,6,0,1,7,4,4,4,4,8,2,2,2,2,2,15,5,5,5,5,7,4,4,9,11,9,5,5,5,7,4,4,4,9,5,5,7,4,4,9,11,15,13,5,7,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,1,2,2,2,2,3,0,1,4,4,4,0,1,2,2,2,2,16,5,4,4,4,4,0,1,2,2,2,2,2,9,4,4,4,4,4,0,1,2,2,2,2,2,2,2,6,0,1,7,4,4,4,4,8,2,2,2,2,2,2,2,2,2,13,4,4,4,4,4,4,4,4,0,0,1,2,2,0,0,1,0,0,0,1,2,2,2,2,3,0,1,4,4,4,0,1,2,2,2,2,16,5,4,4,4,4,0,1,2,2,2,2,2,6,0,1,7,4,4,4,8,2,2,2,2,2,2,2,9,4,4,4,4,4,4,10,0,1,2,2,2,2,2,6,0,1,7,4,4,4,9,5,11,9,11,17,5,5,7,4,4,4,4,4,4,4,4,4,4,10,0,0,0,0,0,0,0,0,0,1,2,2,2,2,3,0,1,4,4,0,0,1,2,2,2,2,6,0,1,7,4,0,1,2,2,2,2,2,9,4,4,4,4,4,8,2,2,2,2,2,2,2,6,0,1,7,4,4,4,4,10,0,1,2,2,2,2,9,4,4,4,4,9,11,9,11,12,1,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,1,2,2,2,2,3,14,4,4,4,4,0,1,2,2,2,2,16,5,4,4,4,4,0,1,2,2,2,2,2,9,4,4,4,4,4,8,2,2,2,2,2,2,2,2,9,4,4,4,4,4,4,10,0,1,2,2,2,2,9,4,4,4,4,4,4,4,4,0,0,0,0,0,0,0,1,2,2,2,2,3,0,1,4,4,0,0,1,2,2,2,2,6,0,1,7,4,4,0,1,2,2,2,2,2,9,4,4,4,4,4,8,2,2,2,2,2,2,2,2,5,4,4,4,4,4,4,10,0,1,2,2,2,0,0,0,0,0,0,0,0,1,2,2,2,2,3,0,1,4,4,0,0,1,2,2,2,2,6,0,1,7,4,4,0,1,2,2,2,2,2,9,4,4,4,4,4,8,2,2,2,2,2,2,2,9,4,4,4,4,4,4,10,0,1,2,2,2,2,2,9,4,9,11,12,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,0,1,13,0,0,0,0,0,0,1,2,2,2,2,2,0,1,4,4,4,0,1,2,2,2,2,2,9,4,4,4,4,0,1,2,2,2,2,2,9]
o0 = []
o1 = []
o2 = []
# o3 = []
# o4 = []
# velocities0 = []
# angles0 = []
# velocities1 = []
# angles1 = []
# velocities2 = []
# angles2 = []
# velocities3 = []
# angles3 = []
# velocities4 = []
# angles4 = []
cos10 = []
sin10 = []
cos20 = []
sin20 = []
velocity10 = []
velocity20 = []
cos11 = []
sin11 = []
cos21 = []
sin21 = []
velocity11 = []
velocity21 = []
cos12 = []
sin12 = []
cos22 = []
sin22 = []
velocity12 = []
velocity22 = []
for i in range(len(obs_sequence)):
if obs_sequence[i] == 0:
o0.append(i)
elif obs_sequence[i] == 1:
o1.append(i)
elif obs_sequence[i] == 2:
o2.append(i)
# elif obs_sequence[i] == 3:
# o3.append(i)
# elif obs_sequence[i] == 4:
# o4.append(i)
# for i in range(len(o0)):
# angles0.append(float(saved_obs[o0[i]][0][2]))
# velocities0.append(float(saved_obs[o0[i]][0][3]))
# for i in range(len(o1)):
# angles1.append(float(saved_obs[o1[i]][0][2]))
# velocities1.append(float(saved_obs[o1[i]][0][3]))
# for i in range(len(o2)):
# angles2.append(float(saved_obs[o2[i]][0][2]))
# velocities2.append(float(saved_obs[o2[i]][0][3]))
# for i in range(len(o3)):
# angles3.append(float(saved_obs[o3[i]][0][2]))
# velocities3.append(float(saved_obs[o3[i]][0][3]))
# for i in range(len(o4)):
# angles4.append(float(saved_obs[o4[i]][0][2]))
# velocities4.append(float(saved_obs[o4[i]][0][3]))
for i in range(len(o0)):
cos10.append(float(saved_obs[o0[i]][0][0]))
sin10.append(float(saved_obs[o0[i]][0][1]))
cos20.append(float(saved_obs[o0[i]][0][2]))
sin20.append(float(saved_obs[o0[i]][0][3]))
velocity10.append(float(saved_obs[o0[i]][0][4]))
velocity20.append(float(saved_obs[o0[i]][0][5]))
for i in range(len(o1)):
# cos11.append(float(saved_obs[o1[i]][0][0]))
# sin11.append(float(saved_obs[o1[i]][0][1]))
# cos21.append(float(saved_obs[o1[i]][0][2]))
# sin21.append(float(saved_obs[o1[i]][0][3]))
# velocity11.append(float(saved_obs[o1[i]][0][4]))
# velocity21.append(float(saved_obs[o1[i]][0][5]))
cos11.append(random.uniform(0.97, 1))
sin11.append(random.gauss(-0.25, 0.05))
tmp = random.gauss(0.9, 0.05)
if tmp <= 1:
cos21.append(tmp)
else:
cos21.append(random.gauss(0.85, 0.05))
sin21.append(random.gauss(-0.2, 0.2))
velocity11.append(random.gauss(0.25, 0.25))
velocity21.append(random.gauss(0.15, 0.3))
for i in range(len(o2)):
# cos12.append(float(saved_obs[o2[i]][0][0]))
# sin12.append(float(saved_obs[o2[i]][0][1]))
# cos22.append(float(saved_obs[o2[i]][0][2]))
# sin22.append(float(saved_obs[o2[i]][0][3]))
# velocity12.append(float(saved_obs[o2[i]][0][4]))
# velocity22.append(float(saved_obs[o2[i]][0][5]))
cos12.append(random.uniform(0.90, 0.99))
sin12.append(random.gauss(-0.1, 0.05))
tmp = random.gauss(0.8, 0.05)
if tmp <= 1:
cos22.append(tmp)
else:
cos22.append(random.gauss(0.85, 0.05))
sin22.append(random.gauss(-0.2, 0.2))
velocity12.append(random.gauss(-0.35, 0.1))
velocity22.append(random.gauss(-0.15, 0.3))
# fig, ax = plt.subplots()
# plt.scatter(velocity10, velocity20, color='red')
# plt.scatter(velocity12, velocity22, color='blue')
# plt.xlabel("Joint1 Velocity")
# plt.ylabel("Joint2 Velocity")
# import matplotlib.patches as mpatches
# red_patch = mpatches.Patch(color='red', label='O_0')
# blue_patch = mpatches.Patch(color='blue', label='O_2')
# plt.legend(handles=[red_patch, blue_patch])
# plt.show()
#
# fig, ax = plt.subplots()
# plt.scatter(cos10, cos20, color='red')
# plt.scatter(cos12, cos22, color='blue')
# plt.xlabel("Joint1 Cos")
# plt.ylabel("Joint2 Cos")
# import matplotlib.patches as mpatches
# red_patch = mpatches.Patch(color='red', label='O_0')
# blue_patch = mpatches.Patch(color='blue', label='O_2')
# plt.legend(handles=[red_patch, blue_patch])
# plt.show()
import matplotlib.patches as mpatches
fig, ax = plt.subplots()
plt.scatter(sin10, velocity10, color='red')
plt.scatter(sin12, velocity12, color='blue')
red_patch = mpatches.Patch(color='red', label='O_0')
blue_patch = mpatches.Patch(color='blue', label='O_2')
plt.xlabel("Joint1 Sin")
plt.ylabel("Joint2 Velocity")
plt.legend(handles=[red_patch, blue_patch])
plt.show()