-
Notifications
You must be signed in to change notification settings - Fork 749
/
Copy pathwan_14b_image_to_video.py
51 lines (46 loc) · 3.03 KB
/
wan_14b_image_to_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from diffsynth import ModelManager, WanVideoPipeline, save_video, VideoData
from modelscope import snapshot_download, dataset_snapshot_download
from PIL import Image
# Download models
snapshot_download("Wan-AI/Wan2.1-I2V-14B-480P", local_dir="models/Wan-AI/Wan2.1-I2V-14B-480P")
# Load models
model_manager = ModelManager(device="cpu")
model_manager.load_models(
["models/Wan-AI/Wan2.1-I2V-14B-480P/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"],
torch_dtype=torch.float32, # Image Encoder is loaded with float32
)
model_manager.load_models(
[
[
"models/Wan-AI/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00001-of-00007.safetensors",
"models/Wan-AI/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00002-of-00007.safetensors",
"models/Wan-AI/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00003-of-00007.safetensors",
"models/Wan-AI/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00004-of-00007.safetensors",
"models/Wan-AI/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00005-of-00007.safetensors",
"models/Wan-AI/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00006-of-00007.safetensors",
"models/Wan-AI/Wan2.1-I2V-14B-480P/diffusion_pytorch_model-00007-of-00007.safetensors",
],
"models/Wan-AI/Wan2.1-I2V-14B-480P/models_t5_umt5-xxl-enc-bf16.pth",
"models/Wan-AI/Wan2.1-I2V-14B-480P/Wan2.1_VAE.pth",
],
torch_dtype=torch.bfloat16, # You can set `torch_dtype=torch.float8_e4m3fn` to enable FP8 quantization.
)
pipe = WanVideoPipeline.from_model_manager(model_manager, torch_dtype=torch.bfloat16, device="cuda")
pipe.enable_vram_management(num_persistent_param_in_dit=6*10**9) # You can set `num_persistent_param_in_dit` to a small number to reduce VRAM required.
# Download example image
dataset_snapshot_download(
dataset_id="DiffSynth-Studio/examples_in_diffsynth",
local_dir="./",
allow_file_pattern=f"data/examples/wan/input_image.jpg"
)
image = Image.open("data/examples/wan/input_image.jpg")
# Image-to-video
video = pipe(
prompt="一艘小船正勇敢地乘风破浪前行。蔚蓝的大海波涛汹涌,白色的浪花拍打着船身,但小船毫不畏惧,坚定地驶向远方。阳光洒在水面上,闪烁着金色的光芒,为这壮丽的场景增添了一抹温暖。镜头拉近,可以看到船上的旗帜迎风飘扬,象征着不屈的精神与冒险的勇气。这段画面充满力量,激励人心,展现了面对挑战时的无畏与执着。",
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走",
input_image=image,
num_inference_steps=50,
seed=0, tiled=True
)
save_video(video, "video.mp4", fps=15, quality=5)