diff --git a/setup.py b/setup.py index 155e3a0c1..75c1077d3 100644 --- a/setup.py +++ b/setup.py @@ -75,6 +75,8 @@ "sphinx_rtd_theme", "myst-parser", "sphinxcontrib-mermaid", + # extra + "transformers", ] extra_gradio_requires = [ diff --git a/src/agentscope/__init__.py b/src/agentscope/__init__.py index 7a642e6bc..2b48936a9 100644 --- a/src/agentscope/__init__.py +++ b/src/agentscope/__init__.py @@ -14,6 +14,7 @@ from . import exception from . import parsers from . import rag +from . import tokens # objects or function from .msghub import msghub diff --git a/src/agentscope/logging.py b/src/agentscope/logging.py index 951de472a..498c007b2 100644 --- a/src/agentscope/logging.py +++ b/src/agentscope/logging.py @@ -32,7 +32,7 @@ LEVEL_SAVE_MSG = "SAVE_MSG" _DEFAULT_LOG_FORMAT = ( - "{time:YYYY-MM-DD HH:mm:ss.SSS} | {" + "{time:YYYY-MM-DD HH:mm:ss} | {" "level: <8} | {name}:{" "function}:{line} - {" "message}" diff --git a/src/agentscope/models/model.py b/src/agentscope/models/model.py index 0586d4c94..5ace8c161 100644 --- a/src/agentscope/models/model.py +++ b/src/agentscope/models/model.py @@ -231,7 +231,7 @@ def format( self, *args: Union[Msg, Sequence[Msg]], ) -> Union[List[dict], str]: - """Format the input string or dict into the format that the model + """Format the input messages into the format that the model API required.""" raise NotImplementedError( f"Model Wrapper [{type(self).__name__}]" diff --git a/src/agentscope/service/__init__.py b/src/agentscope/service/__init__.py index 7d33e6501..6d2fd1342 100644 --- a/src/agentscope/service/__init__.py +++ b/src/agentscope/service/__init__.py @@ -66,7 +66,10 @@ def get_help() -> None: """Get help message.""" - help_msg = f"The following service are available:\n{__all__}" + + help_msg = "\n - ".join( + ["The following services are available:"] + __all__[4:], + ) logger.info(help_msg) diff --git a/src/agentscope/service/browser/web_browser.py b/src/agentscope/service/browser/web_browser.py index b0958eb3c..5d47848b2 100644 --- a/src/agentscope/service/browser/web_browser.py +++ b/src/agentscope/service/browser/web_browser.py @@ -291,7 +291,7 @@ def action_type( self._page.evaluate("element => element.focus()", web_ele) # Type in the text - web_ele.type(text) + web_ele.type(str(text)) self._wait_for_load( "Wait for finish typing", "Finished", diff --git a/src/agentscope/tokens.py b/src/agentscope/tokens.py new file mode 100644 index 000000000..ed9103075 --- /dev/null +++ b/src/agentscope/tokens.py @@ -0,0 +1,394 @@ +# -*- coding: utf-8 -*- +"""The tokens interface for agentscope.""" +import os +from http import HTTPStatus +from typing import Callable, Union, Optional, Any + +from loguru import logger + + +__register_models = {} +# The dictionary to store the model names and token counting functions. +# TODO: a more elegant way to store the model names and functions. + + +def count(model_name: str, messages: list[dict[str, str]]) -> int: + """Count the number of tokens for the given model and messages. + + Args: + model_name (`str`): + The name of the model. + messages (`list[dict[str, str]]`): + A list of dictionaries. + """ + # Type checking + if not isinstance(model_name, str): + raise TypeError( + f"Expected model_name to be a string, but got {type(model_name)}.", + ) + if not isinstance(messages, list): + raise TypeError( + f"Expected messages to be a list, but got {type(messages)}.", + ) + for i, message in enumerate(messages): + if not isinstance(message, dict): + raise TypeError( + f"Expected messages[{i}] to be a dict, but got " + f"{type(message)}.", + ) + + # Counting tokens according to the model name + # Register models + if model_name in __register_models: + return __register_models[model_name](model_name, messages) + + # OpenAI + elif model_name.startswith("gpt-"): + return count_openai_tokens(model_name, messages) + + # Gemini + elif model_name.startswith("gemini-"): + return count_gemini_tokens(model_name, messages) + + # Dashscope + elif model_name.startswith("qwen-"): + return count_dashscope_tokens(model_name, messages) + + else: + raise ValueError( + f"Unsupported model {model_name} for token counting. " + "Please register the model with the corresponding token counting " + "function by " + "`agentscope.tokens.register_model(model_name, token_count_func)`", + ) + + +def _count_content_tokens_for_openai_vision_model( + content: list[dict], + encoding: Any, +) -> int: + """Yield the number of tokens for the content of an OpenAI vision model. + Implemented according to https://platform.openai.com/docs/guides/vision. + + Args: + content (`list[dict]`): + A list of dictionaries. + encoding (`Any`): + The encoding object. + + Example: + .. code-block:: python + + _yield_tokens_for_openai_vision_model( + [ + { + "type": "text", + "text": "xxx", + }, + { + "type": "image_url", + "image_url": { + "url": "xxx", + "detail": "auto", + } + }, + # ... + ] + ) + + Returns: + `Generator[int, None, None]`: Generate the number of tokens in a + generator. + """ + num_tokens = 0 + for item in content: + if not isinstance(item, dict): + raise TypeError( + "If you're using a vision model for OpenAI models," + "The content field should be a list of " + f"dictionaries, but got {type(item)}.", + ) + + typ = item.get("type", None) + if typ == "text": + num_tokens += len(encoding.encode(item["text"])) + + elif typ == "image_url": + # By default, we use high here to avoid undercounting tokens + detail = item.get("image_url").get("detail", "high") + if detail == "low": + num_tokens += 85 + elif detail in ["auto", "high"]: + num_tokens += 170 + else: + raise ValueError( + f"Unsupported image detail {detail}, expected " + f"one of ['low', 'auto', 'high'].", + ) + else: + raise ValueError( + "The type field currently only supports 'text' " + f"and 'image_url', but got {typ}.", + ) + return num_tokens + + +def count_openai_tokens( # pylint: disable=too-many-branches + model_name: str, + messages: list[dict[str, str]], +) -> int: + """Count the number of tokens for the given OpenAI Chat model and + messages. + + Refer to https://platform.openai.com/docs/advanced-usage/managing-tokens + + Args: + model_name (`str`): + The name of the OpenAI Chat model, e.g. "gpt-4o". + messages (`list[dict[str, str]]`): + A list of dictionaries. Each dictionary should have the keys + of "role" and "content", and an optional key of "name". For vision + LLMs, the value of "content" should be a list of dictionaries. + """ + import tiktoken + + try: + encoding = tiktoken.encoding_for_model(model_name) + except KeyError: + encoding = tiktoken.get_encoding("o200k_base") + + if model_name in { + "gpt-3.5-turbo-0125", + "gpt-4-0314", + "gpt-4-32k-0314", + "gpt-4-0613", + "gpt-4-32k-0613", + "gpt-4o-mini-2024-07-18", + "gpt-4o-2024-08-06", + }: + tokens_per_message = 3 + tokens_per_name = 1 + elif "gpt-3.5-turbo" in model_name: + return count_openai_tokens( + model_name="gpt-3.5-turbo-0125", + messages=messages, + ) + elif "gpt-4o-mini" in model_name: + return count_openai_tokens( + model_name="gpt-4o-mini-2024-07-18", + messages=messages, + ) + elif "gpt-4o" in model_name: + return count_openai_tokens( + model_name="gpt-4o-2024-08-06", + messages=messages, + ) + elif "gpt-4" in model_name: + return count_openai_tokens(model_name="gpt-4-0613", messages=messages) + else: + raise NotImplementedError( + f"count_openai_tokens() is not implemented for " + f"model {model_name}.", + ) + + num_tokens = 3 # every reply is primed with <|start|>assistant<|message|> + for message in messages: + num_tokens += tokens_per_message + for key, value in message.items(): + # Considering vision models + if key == "content" and isinstance(value, list): + num_tokens += _count_content_tokens_for_openai_vision_model( + value, + encoding, + ) + + elif isinstance(value, str): + num_tokens += len(encoding.encode(value)) + + else: + raise TypeError( + f"Invalid type {type(value)} in the {key} field.", + ) + + if key == "name": + num_tokens += tokens_per_name + + return num_tokens + + +def count_gemini_tokens( + model_name: str, + messages: list[dict[str, str]], +) -> int: + """Count the number of tokens for the given Gemini model and messages. + + Args: + model_name (`str`): + The name of the Gemini model, e.g. "gemini-1.5-pro". + messages (`list[dict[str, str]]`): + """ + try: + import google.generativeai as genai + except ImportError as exc: + raise ImportError( + "The package `google.generativeai` is required for token counting " + "for Gemini models. Install it with " + "`pip install -q -U google-generativeai` and refer to " + "https://ai.google.dev/gemini-api/docs/get-started/" + "tutorial?lang=python for details.", + ) from exc + + model = genai.GenerativeModel(model_name) + tokens_count = model.count_tokens(messages).total_tokens + return tokens_count + + +def count_dashscope_tokens( + model_name: str, + messages: list[dict[str, str]], + api_key: Optional[str] = None, +) -> int: + """Count the number of tokens for the given Dashscope model and messages. + + Note this function will call the Dashscope API to count the tokens. + Refer to + https://help.aliyun.com/zh/dashscope/developer-reference/token-api?spm=5176.28197632.console-base_help.dexternal.1c407e06Y2bQVB&disableWebsiteRedirect=true + for more details. + + Args: + model_name (`str`): + The name of the Dashscope model, e.g. "qwen-max". + messages (`list[dict[str, str]]`): + The list of messages, each message is a dict with the key 'text'. + api_key (`Optional[str]`, defaults to `None`): + The API key for Dashscope. If `None`, the API key will be read + from the environment variable `DASHSCOPE_API_KEY`. + + Returns: + `int`: The number of tokens. + """ + try: + import dashscope + except ImportError as exc: + raise ImportError( + "The package `dashscope` is required for token counting " + "for Dashscope models.", + ) from exc + + response = dashscope.Tokenization.call( + model=model_name, + messages=messages, + api_key=api_key or os.environ.get("DASHSCOPE_API_KEY"), + ) + + if response.status_code != HTTPStatus.OK: + raise RuntimeError({**response}) + + return response.usage["input_tokens"] + + +def supported_models() -> list[str]: + """Get the list of supported models for token counting.""" + infos = [ + "Supported models for token counting: ", + " 1. OpenAI Chat models (starting with 'gpt-') ", + " 2. Gemini models (starting with 'gemini-') ", + " 3. Dashscope models (starting with 'qwen-') ", + f" 4. Registered models: {', '.join(__register_models.keys())} ", + ] + for info in infos: + logger.info(info) + + return ["gpt-.*", "gemini-.*", "qwen-.*"] + list(__register_models.keys()) + + +def register_model( + model_name: Union[str, list[str]], + tokens_count_func: Callable[[str, list[dict[str, str]]], int], +) -> None: + """Register a tokens counting function for the model(s) with the given + name(s). If the model name is conflicting with the existing one, the + new function will override the existing one. + + Args: + model_name (`Union[str, list[str]]`): + The name of the model or a list of model names. + tokens_count_func (`Callable[[str, list[dict[str, str]]], int]`): + The tokens counting function for the model, which takes the model + name and a list of dictionary messages as input and returns the + number of tokens. + """ + if isinstance(model_name, str): + model_name = [model_name] + + for name in model_name: + if name in __register_models: + logger.warning( + f"Overriding the existing token counting function for model " + f"named {name}.", + ) + __register_models[name] = tokens_count_func + + logger.info( + f"Successfully registered token counting function for models: " + f"{', '.join(model_name)}.", + ) + + +def count_huggingface_tokens( + pretrained_model_name_or_path: str, + messages: list[dict[str, str]], + use_fast: bool = False, + trust_remote_code: bool = False, + enable_mirror: bool = False, +) -> int: + """Count the number of tokens for the given HuggingFace model and messages. + + Args: + pretrained_model_name_or_path (`str`): + The model name of path used in `AutoTokenizer.from_pretrained`. + messages (`list[dict[str, str]]`): + The list of messages, each message is a dictionary with keys "role" + and "content". + use_fast (`bool`, defaults to `False`): + Whether to use the fast tokenizer when loading the tokenizer. + trust_remote_code (`bool`, defaults to `False`): + Whether to trust the remote code in transformers' + `AutoTokenizer.from_pretrained` API. + enable_mirror (`bool`, defaults to `False`): + Whether to enable the HuggingFace mirror, which is useful for + users in China. + + Returns: + `int`: The number of tokens. + """ + if enable_mirror: + os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" + + try: + from transformers import AutoTokenizer + except ImportError as exc: + raise ImportError( + "The package `transformers` is required for downloading tokenizer", + ) from exc + + tokenizer = AutoTokenizer.from_pretrained( + pretrained_model_name_or_path, + use_fast=use_fast, + trust_remote_code=trust_remote_code, + ) + + if tokenizer.chat_template is None: + raise ValueError( + f"The tokenizer for model {pretrained_model_name_or_path} in " + f"transformers does not have chat template.", + ) + + tokenized_msgs = tokenizer.apply_chat_template( + messages, + add_generation_prompt=False, + tokenize=True, + return_tensors="np", + )[0] + + return len(tokenized_msgs) diff --git a/tests/tokens_test.py b/tests/tokens_test.py new file mode 100644 index 000000000..193034b50 --- /dev/null +++ b/tests/tokens_test.py @@ -0,0 +1,132 @@ +# -*- coding: utf-8 -*- +"""Unit tests for token counting.""" +import json +import unittest +from http import HTTPStatus +from unittest.mock import patch, MagicMock + +from agentscope.tokens import ( + count_openai_tokens, + count_dashscope_tokens, + count_gemini_tokens, + register_model, + count, + supported_models, + count_huggingface_tokens, +) + + +class TokenCountTest(unittest.TestCase): + """Unit test for token counting.""" + + def setUp(self) -> None: + """Init for ExampleTest.""" + self.messages = [ + {"role": "system", "content": "You're a helpful assistant."}, + {"role": "user", "content": "Hello, how are you?"}, + {"role": "assistant", "content": "I'm fine, thank you."}, + ] + + self.messages_gemini = [ + {"role": "system", "parts": "You're a helpful assistant."}, + {"role": "user", "parts": "Hello, how are you?"}, + {"role": "assistant", "parts": "I'm fine, thank you."}, + ] + + self.messages_openai = [ + { + "role": "system", + "content": "You're a helpful assistant named Friday.", + "name": "system", + }, + { + "role": "user", + "content": "Hello, how are you?", + "name": "Bob", + }, + { + "role": "assistant", + "content": "I'm fine, thank you.", + "name": "Friday", + }, + ] + self.messages_openai_vision = [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": "I want to book a flight to Paris.", + }, + { + "type": "image_url", + "image_url": { + "url": "https://example.com/image.jpg", + "detail": "auto", + }, + }, + ], + }, + ] + + def test_openai_token_counting(self) -> None: + """Test OpenAI token counting functions.""" + n_tokens = count_openai_tokens("gpt-4o", self.messages_openai) + self.assertEqual(n_tokens, 40) + + n_tokens = count_openai_tokens("gpt-4o", self.messages) + self.assertEqual(n_tokens, 32) + + n_tokens = count_openai_tokens("gpt-4o", self.messages_openai_vision) + self.assertEqual(n_tokens, 186) + + @patch("dashscope.Tokenization.call") + def test_dashscope_token_counting(self, mock_call: MagicMock) -> None: + """Test Dashscope token counting functions.""" + mock_call.return_value.status_code = HTTPStatus.OK + mock_call.return_value.usage = {"input_tokens": 21} + + n_tokens = count_dashscope_tokens("qwen-max", self.messages) + self.assertEqual(n_tokens, 21) + + @patch("google.generativeai.GenerativeModel") + def test_gemini_token_counting(self, mock_model: MagicMock) -> None: + """Test Gemini token counting functions.""" + + mock_response = MagicMock() + mock_response.total_tokens = 24 + mock_model.return_value.count_tokens.return_value = mock_response + + n_tokens = count_gemini_tokens( + "gemini-1.5-pro", + self.messages_gemini, + ) + self.assertEqual(n_tokens, 24) + + def test_register_token_counting(self) -> None: + """Test register token counting functions.""" + + def dummy_token_counting(_: str, messages: list) -> int: + return len(json.dumps(messages, indent=4, ensure_ascii=False)) + + register_model("my-model", dummy_token_counting) + num = count("my-model", self.messages) + + self.assertListEqual( + supported_models(), + ["gpt-.*", "gemini-.*", "qwen-.*"] + ["my-model"], + ) + self.assertEqual(num, 252) + + def test_huggingface_token_counting(self) -> None: + """Test Huggingface token counting functions.""" + n_tokens = count_huggingface_tokens( + "Qwen/Qwen2.5-7B-Instruct", + messages=self.messages, + enable_mirror=True, + ) + self.assertEqual(n_tokens, 34) + + +if __name__ == "__main__": + unittest.main()