From 4ed68a2be1e6b4f607e27c38ce5eab9f66492e3f Mon Sep 17 00:00:00 2001 From: wpbonelli Date: Wed, 18 Oct 2023 16:12:53 -0400 Subject: [PATCH] refactor(contour_array): add layer param, update docstrings, expand tests (#1975) * add layer param to flopy.export.utils.contour_array() * pop/pass layer kwarg to contour_array() in export_array_contours() * test export_array_contours() disu grids with constant/variable ncpl * test PlotMapView.contour_array() array formats and with/without layer * update PlotMapView.contour_array() docstring (dimension expectations) * refactor some disu test grids & models into fixtures --- autotest/test_export.py | 143 ++++++++++++++++++------- autotest/test_gridgen.py | 27 +++-- autotest/test_plot_map_view.py | 71 +++++++++--- flopy/discretization/structuredgrid.py | 2 +- flopy/discretization/vertexgrid.py | 4 +- flopy/export/utils.py | 9 +- flopy/plot/map.py | 10 +- 7 files changed, 190 insertions(+), 76 deletions(-) diff --git a/autotest/test_export.py b/autotest/test_export.py index c7f84661da..1b5e607bd1 100644 --- a/autotest/test_export.py +++ b/autotest/test_export.py @@ -139,6 +139,44 @@ def disu_sim(name, tmpdir, missing_arrays=False): return sim +@pytest.fixture +def unstructured_grid(example_data_path): + ws = example_data_path / "unstructured" + + # load vertices + verts = load_verts(ws / "ugrid_verts.dat") + + # load the index list into iverts, xc, and yc + iverts, xc, yc = load_iverts(ws / "ugrid_iverts.dat", closed=True) + + # create a 3 layer model grid + ncpl = np.array(3 * [len(iverts)]) + nnodes = np.sum(ncpl) + + top = np.ones(nnodes) + botm = np.ones(nnodes) + + # set top and botm elevations + i0 = 0 + i1 = ncpl[0] + elevs = [100, 0, -100, -200] + for ix, cpl in enumerate(ncpl): + top[i0:i1] *= elevs[ix] + botm[i0:i1] *= elevs[ix + 1] + i0 += cpl + i1 += cpl + + return UnstructuredGrid( + vertices=verts, + iverts=iverts, + xcenters=xc, + ycenters=yc, + top=top, + botm=botm, + ncpl=ncpl, + ) + + @requires_pkg("shapefile") @pytest.mark.parametrize("pathlike", (True, False)) def test_output_helper_shapefile_export( @@ -613,7 +651,7 @@ def test_export_array2(function_tmpdir): @requires_pkg("shapefile", "shapely") -def test_export_array_contours(function_tmpdir): +def test_export_array_contours_structured(function_tmpdir): nrow = 7 ncol = 11 crs = 4431 @@ -648,6 +686,61 @@ def test_export_array_contours(function_tmpdir): assert os.path.isfile(filename), "did not create contour shapefile" +@requires_pkg("shapefile", "shapely") +def test_export_array_contours_unstructured( + function_tmpdir, unstructured_grid +): + from shapefile import Reader + + grid = unstructured_grid + fname = function_tmpdir / "myarraycontours1.shp" + export_array_contours(grid, fname, np.arange(grid.nnodes)) + assert fname.is_file(), "did not create contour shapefile" + + # visual debugging + grid.plot(alpha=0.2) + with Reader(fname) as r: + shapes = r.shapes() + for s in shapes: + x = [i[0] for i in s.points[:]] + y = [i[1] for i in s.points[:]] + plt.plot(x, y) + + # plt.show() + + +from autotest.test_gridgen import sim_disu_diff_layers + + +@requires_pkg("shapefile", "shapely") +def test_export_array_contours_unstructured_diff_layers( + function_tmpdir, sim_disu_diff_layers +): + from shapefile import Reader + + gwf = sim_disu_diff_layers.get_model() + grid = gwf.modelgrid + a = np.arange(grid.nnodes) + for layer in range(3): + fname = function_tmpdir / f"contours.{layer}.shp" + export_array_contours(grid, fname, a, layer=layer) + assert fname.is_file(), "did not create contour shapefile" + + # visual debugging + fig, axes = plt.subplots(1, 3, subplot_kw={"aspect": "equal"}) + for layer, ax in enumerate(axes): + fname = function_tmpdir / f"contours.{layer}.shp" + with Reader(fname) as r: + shapes = r.shapes() + for s in shapes: + x = [i[0] for i in s.points[:]] + y = [i[1] for i in s.points[:]] + ax.plot(x, y) + grid.plot(ax=ax, alpha=0.2, layer=layer) + + # plt.show() + + @requires_pkg("shapefile", "shapely") def test_export_contourf(function_tmpdir, example_data_path): from shapefile import Reader @@ -1331,52 +1424,18 @@ def test_vtk_vector(function_tmpdir, example_data_path): @requires_pkg("vtk") -def test_vtk_unstructured(function_tmpdir, example_data_path): +def test_vtk_unstructured(function_tmpdir, unstructured_grid): from vtkmodules.util.numpy_support import vtk_to_numpy from vtkmodules.vtkIOLegacy import vtkUnstructuredGridReader - u_data_ws = example_data_path / "unstructured" - - # load vertices - verts = load_verts(u_data_ws / "ugrid_verts.dat") - - # load the index list into iverts, xc, and yc - iverts, xc, yc = load_iverts(u_data_ws / "ugrid_iverts.dat", closed=True) - - # create a 3 layer model grid - ncpl = np.array(3 * [len(iverts)]) - nnodes = np.sum(ncpl) - - top = np.ones(nnodes) - botm = np.ones(nnodes) - - # set top and botm elevations - i0 = 0 - i1 = ncpl[0] - elevs = [100, 0, -100, -200] - for ix, cpl in enumerate(ncpl): - top[i0:i1] *= elevs[ix] - botm[i0:i1] *= elevs[ix + 1] - i0 += cpl - i1 += cpl - - # create the modelgrid - modelgrid = UnstructuredGrid( - vertices=verts, - iverts=iverts, - xcenters=xc, - ycenters=yc, - top=top, - botm=botm, - ncpl=ncpl, - ) + grid = unstructured_grid outfile = function_tmpdir / "disu_grid.vtu" vtkobj = Vtk( - modelgrid=modelgrid, vertical_exageration=2, binary=True, smooth=False + modelgrid=grid, vertical_exageration=2, binary=True, smooth=False ) - vtkobj.add_array(modelgrid.top, "top") - vtkobj.add_array(modelgrid.botm, "botm") + vtkobj.add_array(grid.top, "top") + vtkobj.add_array(grid.botm, "botm") vtkobj.write(outfile) assert is_binary_file(outfile) @@ -1390,7 +1449,9 @@ def test_vtk_unstructured(function_tmpdir, example_data_path): top2 = vtk_to_numpy(data.GetCellData().GetArray("top")) - assert np.allclose(np.ravel(top), top2), "Field data not properly written" + assert np.allclose( + np.ravel(grid.top), top2 + ), "Field data not properly written" @requires_pkg("vtk", "pyvista") diff --git a/autotest/test_gridgen.py b/autotest/test_gridgen.py index 0703a274eb..4063e86ff0 100644 --- a/autotest/test_gridgen.py +++ b/autotest/test_gridgen.py @@ -164,13 +164,11 @@ def test_mf6disv(function_tmpdir): plt.close("all") -@pytest.mark.slow -@requires_exe("mf6", "gridgen") -@requires_pkg("shapely", "shapefile") -def test_mf6disu(function_tmpdir): +@pytest.fixture +def sim_disu_diff_layers(function_tmpdir): from shapely.geometry import Polygon - name = "dummy" + name = "disu_diff_layers" nlay = 3 nrow = 10 ncol = 10 @@ -232,6 +230,17 @@ def test_mf6disu(function_tmpdir): head_filerecord=head_file, saverecord=[("HEAD", "ALL"), ("BUDGET", "ALL")], ) + + return sim + + +@pytest.mark.slow +@requires_exe("mf6", "gridgen") +@requires_pkg("shapely", "shapefile") +def test_mf6disu(sim_disu_diff_layers): + sim = sim_disu_diff_layers + ws = sim.sim_path + gwf = sim.get_model() sim.write_simulation() gwf.modelgrid.set_coord_info(angrot=15) @@ -243,9 +252,9 @@ def test_mf6disu(function_tmpdir): assert np.allclose(gwf.modelgrid.ncpl, np.array([436, 184, 112])) # write grid and model shapefiles - fname = function_tmpdir / "grid.shp" + fname = ws / "grid.shp" gwf.modelgrid.write_shapefile(fname) - fname = function_tmpdir / "model.shp" + fname = ws / "model.shp" gwf.export(fname) sim.run_simulation(silent=True) @@ -272,7 +281,7 @@ def test_mf6disu(function_tmpdir): ax.set_title(f"Layer {ilay + 1}") pmv.plot_vector(spdis["qx"], spdis["qy"], color="white") fname = "results.png" - fname = function_tmpdir / fname + fname = ws / fname plt.savefig(fname) plt.close("all") @@ -307,7 +316,7 @@ def test_mf6disu(function_tmpdir): sim_name=name, version="mf6", exe_name="mf6", - sim_ws=function_tmpdir, + sim_ws=ws, ) gwf = sim.get_model(name) diff --git a/autotest/test_plot_map_view.py b/autotest/test_plot_map_view.py index 7c0aa8470b..ae4d2630e6 100644 --- a/autotest/test_plot_map_view.py +++ b/autotest/test_plot_map_view.py @@ -31,6 +31,12 @@ from flopy.utils import CellBudgetFile, EndpointFile, HeadFile, PathlineFile +@pytest.fixture +def rng(): + # set seed so parametrized plot tests are comparable + return np.random.default_rng(0) + + @requires_pkg("shapely") def test_map_view(): m = flopy.modflow.Modflow(rotation=20.0) @@ -162,21 +168,19 @@ def test_map_view_bc_UZF_3lay(example_data_path): ), f"Unexpected collection type: {type(col)}" -def test_map_view_contour(function_tmpdir): - arr = np.random.rand(10, 10) * 100 - arr[-1, :] = np.nan - delc = np.array([10] * 10, dtype=float) - delr = np.array([8] * 10, dtype=float) - top = np.ones((10, 10), dtype=float) - botm = np.ones((3, 10, 10), dtype=float) +@pytest.mark.parametrize("ndim", [1, 2, 3]) +def test_map_view_contour_array_structured(function_tmpdir, ndim, rng): + nlay, nrow, ncol = 3, 10, 10 + ncpl = nrow * ncol + delc = np.array([10] * nrow, dtype=float) + delr = np.array([8] * ncol, dtype=float) + top = np.ones((nrow, ncol), dtype=float) + botm = np.ones((nlay, nrow, ncol), dtype=float) botm[0] = 0.75 botm[1] = 0.5 botm[2] = 0.25 - idomain = np.ones((3, 10, 10)) + idomain = np.ones((nlay, nrow, ncol)) idomain[0, 0, :] = 0 - vmin = np.nanmin(arr) - vmax = np.nanmax(arr) - levels = np.linspace(vmin, vmax, 7) grid = StructuredGrid( delc=delc, @@ -185,16 +189,49 @@ def test_map_view_contour(function_tmpdir): botm=botm, idomain=idomain, lenuni=1, - nlay=3, - nrow=10, - ncol=10, + nlay=nlay, + nrow=nrow, + ncol=ncol, ) - pmv = PlotMapView(modelgrid=grid, layer=0) - contours = pmv.contour_array(a=arr) - plt.savefig(function_tmpdir / "map_view_contour.png") + # define full grid 1D array to contour + arr = rng.random(nlay * nrow * ncol) * 100 + + for l in range(nlay): + if ndim == 1: + # full grid 1D array + pmv = PlotMapView(modelgrid=grid, layer=l) + contours = pmv.contour_array(a=arr) + fname = f"map_view_contour_{ndim}d_l{l}_full.png" + plt.savefig(function_tmpdir / fname) + plt.clf() + + # 1 layer slice + pmv = PlotMapView(modelgrid=grid, layer=l) + contours = pmv.contour_array(a=arr[(l * ncpl) : ((l + 1) * ncpl)]) + fname = f"map_view_contour_{ndim}d_l{l}_1lay.png" + plt.savefig(function_tmpdir / fname) + plt.clf() + elif ndim == 2: + # 1 layer as 2D + # arr[-1, :] = np.nan # add nan to test nan handling + pmv = PlotMapView(modelgrid=grid, layer=l) + contours = pmv.contour_array( + a=arr.reshape(nlay, nrow, ncol)[l, :, :] + ) + plt.savefig(function_tmpdir / f"map_view_contour_{ndim}d_l{l}.png") + plt.clf() + elif ndim == 3: + # full grid as 3D + pmv = PlotMapView(modelgrid=grid, layer=l) + contours = pmv.contour_array(a=arr.reshape(nlay, nrow, ncol)) + plt.savefig(function_tmpdir / f"map_view_contour_{ndim}d_l{l}.png") + plt.clf() # if we ever revert from standard contours to tricontours, restore this nan check + # vmin = np.nanmin(arr) + # vmax = np.nanmax(arr) + # levels = np.linspace(vmin, vmax, 7) # for ix, lev in enumerate(contours.levels): # if not np.allclose(lev, levels[ix]): # raise AssertionError("TriContour NaN catch Failed") diff --git a/flopy/discretization/structuredgrid.py b/flopy/discretization/structuredgrid.py index c7c6246f48..c850fa303d 100644 --- a/flopy/discretization/structuredgrid.py +++ b/flopy/discretization/structuredgrid.py @@ -1637,7 +1637,7 @@ def get_plottable_layer_array(self, a, layer): plotarray = plotarray.reshape(self.shape) plotarray = plotarray[layer, :, :] else: - raise Exception("Array to plot must be of dimension 1, 2, or 3") + raise ValueError("Array to plot must be of dimension 1, 2, or 3") msg = f"{plotarray.shape} /= {required_shape}" assert plotarray.shape == required_shape, msg return plotarray diff --git a/flopy/discretization/vertexgrid.py b/flopy/discretization/vertexgrid.py index 44a9872f57..f22aec2960 100644 --- a/flopy/discretization/vertexgrid.py +++ b/flopy/discretization/vertexgrid.py @@ -528,7 +528,7 @@ def get_plottable_layer_array(self, a, layer): a = np.squeeze(a, axis=1) plotarray = a[layer, :] else: - raise Exception( + raise ValueError( "Array has 3 dimensions so one of them must be of size 1 " "for a VertexGrid." ) @@ -540,7 +540,7 @@ def get_plottable_layer_array(self, a, layer): plotarray = plotarray.reshape(self.nlay, self.ncpl) plotarray = plotarray[layer, :] else: - raise Exception("Array to plot must be of dimension 1 or 2") + raise ValueError("Array to plot must be of dimension 1 or 2") msg = f"{plotarray.shape[0]} /= {required_shape}" assert plotarray.shape == required_shape, msg return plotarray diff --git a/flopy/export/utils.py b/flopy/export/utils.py index 0277e55d43..ff77baadda 100644 --- a/flopy/export/utils.py +++ b/flopy/export/utils.py @@ -1948,14 +1948,15 @@ def export_array_contours( assert nlevels < maxlevels, msg levels = np.arange(imin, imax, interval) ax = plt.subplots()[-1] - ctr = contour_array(modelgrid, ax, a, levels=levels) + layer = kwargs.pop("layer", 0) + ctr = contour_array(modelgrid, ax, a, layer, levels=levels) kwargs["mg"] = modelgrid export_contours(filename, ctr, fieldname, **kwargs) plt.close() -def contour_array(modelgrid, ax, a, **kwargs): +def contour_array(modelgrid, ax, a, layer=0, **kwargs): """ Create a QuadMesh plot of the specified array using pcolormesh @@ -1967,6 +1968,8 @@ def contour_array(modelgrid, ax, a, **kwargs): ax to add the contours a : np.ndarray array to contour + layer : int, optional + layer to contour Returns ------- @@ -1976,7 +1979,7 @@ def contour_array(modelgrid, ax, a, **kwargs): from ..plot import PlotMapView kwargs["ax"] = ax - pmv = PlotMapView(modelgrid=modelgrid) + pmv = PlotMapView(modelgrid=modelgrid, layer=layer) contour_set = pmv.contour_array(a=a, **kwargs) return contour_set diff --git a/flopy/plot/map.py b/flopy/plot/map.py index 98ecdd44d8..27a7ab76db 100644 --- a/flopy/plot/map.py +++ b/flopy/plot/map.py @@ -156,12 +156,16 @@ def plot_array(self, a, masked_values=None, **kwargs): def contour_array(self, a, masked_values=None, **kwargs): """ - Contour an array. If the array is three-dimensional, then the method - will contour the layer tied to this class (self.layer). + Contour an array on the grid. By default the top layer + is contoured. To select a different layer, specify the + layer in the class constructor. + + For structured and vertex grids, the array may be 1D, 2D or 3D. + For unstructured grids, the array must be 1D or 2D. Parameters ---------- - a : numpy.ndarray + a : 1D, 2D or 3D array-like Array to plot. masked_values : iterable of floats, ints Values to mask.