모두의연구소 풀잎스쿨 6기 edwith 논문으로 보는 딥러닝의 맥을 보며 같이 공부하는 사람들이 정리한 repository 입니다.
이 자료들은 edwith 강의를 중심으로 해당 주제에 맞는 여러 참고 문헌들과 풀잎스쿨 발표자료를 정리한 것입니다.
- 전체 발표자들: 강성현, 강재호, 김경태, 김선호, 문동지, 이규희, 이일구, 조원양, 최성욱, 한상훈
- 퍼실이: 이일구
- 4가지 CNN 살펴보기: AlexNet, VGG, GoogLeNet, ResNet
- 발표자료
- 강성현님: ResNet 발표자료 pdf link
- 강의에서 제안한 참고문헌
- ImageNet Classification with Deep Convolutional Neural Networks paper pdf
- Very deep convolutional networks for large-scale image recognition https://arxiv.org/abs/1409.1556
- Going deeper with convolutions https://arxiv.org/abs/1409.4842
- Deep Residual Learning for Image Recognition https://arxiv.org/abs/1512.03385
- 더 보면 좋을 참고문헌 (블로그 등)
- Densely Connected Convolutional Networks https://arxiv.org/abs/1608.06993
- 김성훈 교수님 DenseNet PR12
- 유재준님 Inception and Xception PR12
- 발표자료
- Overfitting을 막는 regularization
- 발표자료
- 강의에서 제안한 참고문헌
- Dropout : A Simple Way to Prevent Neural Networks from Overfitting paper pdf
- Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift https://arxiv.org/abs/1502.03167
- 더 보면 좋을 참고문헌 (블로그 등)
- 정영재님 Batch Normalization PR12
- 이미지의 각 픽셀을 분류하는 Semantic Segmentation
- 발표자료
- 강의에서 제안한 참고문헌
- Fully Convolutional Networks for Semantic Segmentation paper pdf
- Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs https://arxiv.org/abs/1412.7062
- Learning deconvolution network for semantic segmentation https://arxiv.org/abs/1505.04366
- DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs https://arxiv.org/abs/1606.00915
- 더 보면 좋을 참고문헌 (블로그 등)
- 김태오님 DeepLab PR12
- Residual Networks가 왜 잘 되는지 해석해보기
- 발표자료
- 강의에서 제안한 참고문헌
- Deep Residual Learning for Image Recognition https://arxiv.org/abs/1512.03385
- Identity Mappings in Deep Residual Networks https://arxiv.org/abs/1603.05027
- Residual Networks are Exponential Ensembles of Relatively Shallow Networks https://arxiv.org/abs/1605.06431
- Wide Residual Networks https://arxiv.org/abs/1605.07146
- Image Detection 방법론: RCNN, SPPNet, FastRCNN, FasterRCNN
- 발표자료
- 강의에서 제안한 참고문헌
- Rich feature hierarchies for accurate object detection and semantic segmentation https://arxiv.org/abs/1311.2524
- Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition https://arxiv.org/abs/1406.4729
- Fast R-CNN https://arxiv.org/abs/1504.08083
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks https://arxiv.org/abs/1506.01497
- 더 보면 좋을 참고문헌 (블로그 등)
- Oxford Visual Geometry Groups: Detection 자료 detection-part1.pdf, detection-part2.pdf
- 이호성님 detection 정리 github
- 김화평님 Faster R-CNN slideshare
- 박진우님 Faster R-CNN blog
- 이진원님 Faster R-CNN PR12
- Image Detection 방법론: AttentionNet, SSD, YOLO YOLOv2
- 발표자료
- 강의에서 제안한 참고문헌
- AttentionNet: Aggregating Weak Directions for Accurate Object Detection https://arxiv.org/abs/1506.07704
- You Only Look Once: Unified, Real-Time Object Detection https://arxiv.org/abs/1506.02640
- YOLO9000: Better, Faster, Stronger https://arxiv.org/abs/1612.08242
- SSD: Single Shot MultiBox Detector https://arxiv.org/abs/1512.02325
- 더 보면 좋을 참고문헌 (블로그 등)
- 박진우님 YOLO blog
- 이진원님 YOLO9000 PR12
- YOLOv3: An Incremental Improvement https://arxiv.org/abs/1804.02767
- 김태오님 Mask R-CNN PR12
- 징검다리 휴일 (공부도 쉬는게 중요합니다)
- 이미지와 질문이 주어졌을 때 답을 맞추는 Visual QnA
- 발표자료
- 강의에서 제안한 참고문헌
- Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction https://arxiv.org/abs/1511.05756
- Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding https://arxiv.org/abs/1606.01847
- 더 보면 좋을 참고문헌 (블로그 등)
- DPPNet 논문에 나온
Wu-Palmer
similarity youbute
- DPPNet 논문에 나온
- 이미지를 설명하는 문장을 만들어내는 Image Captioning
- 발표자료
- 강의에서 제안한 참고문헌
- Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention https://arxiv.org/abs/1502.03044
- DenseCap: Fully Convolutional Localization Networks for Dense Captioning
- 더 보면 좋을 참고문헌 (github, 블로그 등)
- Show and Tell TensorFlow official code TensorFlow models
- Show, Attend and Tell TensorFlow official code TensorFlow Tutorials
- DenseCap: Fully Convolutional Localization Networks for Dense Captioning author official code
- 강지양님 Show and Tell PR12
- 주어진 사진을 원하는 화풍으로 만드는 Neural Style
- 발표자료
- 강의에서 제안한 참고문헌
- Texture Synthesis Using Convolutional Neural Networks
- 더 보면 좋을 참고문헌 (github, 블로그 등)
- Neural Style Transfer TensorFlow official code TensorFlow Tutorials
- 김승일 소장님 Deep Photo Style Transfer PR12
- Generative Adversarial Network
- 발표자료
- 김선호님: GAN, DCGAN, Pix2Pix, CycleGAN 발표자료 pdf link
- 강의에서 제안한 참고문헌
- Generative Adversarial Network https://arxiv.org/abs/1406.2661
- Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks https://arxiv.org/abs/1511.06434
- Generative Adversarial Text to Image Synthesis https://arxiv.org/abs/1605.05396
- 더 보면 좋을 참고문헌 (github, 블로그 등)
- NIPS 2016 Tutorial: Generative Adversarial Networks https://arxiv.org/abs/1701.00160
- Generative Adversarial Networks : An Overview https://arxiv.org/abs/1710.07035
- DCGAN TensorFlow official code TensorFlow Tutorials
- Pix2Pix TensorFlow official code TensorFlow Tutorials
- 이일구님 Generative models tensorflow version 2.0 style collection github
- 이활석님 tensorflow-generative-model-collections github
- 유재준님 GAN PR12
- 김승일 소장님 GAN PR12
- 차준범님 InfoGAN PR12
- 발표자료