forked from mikeshub/Pololu_Open_IMU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pololu_Open_IMU.ino
668 lines (586 loc) · 19 KB
/
Pololu_Open_IMU.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#include <LSM303.h>
#include <L3G.h>
#include <LSM6.h>
#include <LIS3MDL.h>
#include <Wire.h>
/*todo define / detection for 32 bit
* switch to Madgwick filter and run 6dof at 400Hz
* also test online version of Madgwick with integral feedback
* add declination rotation?
* Make into library
* Test with other IMU versions. Tested on 0J3865 and 0J3337
* Output for python visualization
*/
L3G L3GOBJ;
LSM303 LSM303OBJ;
LSM6 LSM6OBJ;
LIS3MDL LIS3MDLOBJ;
//function prototypes
bool StationaryGyro();
void SetGyroAccMag();
void GetOffsetsAndInitialQuat();
void SetVariables();
void GenerateRotationMatrix();
void GetPitch();
void GetRoll();
void GetYaw();
void GetEuler();
void AHRS();
void InitSensors();
void PollSensors();
void OutputForCalibration();
//------
bool version5 = false;
//uncomment to output data for calibrating the accelerometer or magnetometer
//#define OUTPUT_FOR_CAL
//#define OUTPUT_MAG_FOR_CAL
//#define OUTPUT_ACC_FOR_CAL
#ifdef OUTPUT_MAG_FOR_CAL
#ifdef OUTPUT_ACC_FOR_CAL
#undef OUTPUT_ACC_FOR_CAL
#endif
#endif
#define GYRO_SCALE_FACTOR 0.0175
#define ACC_SCALE_FACTOR_Dxx 0.019140625
#define ACC_SCALE_FACTOR_D_6 0.0011962890625
//http://sailboatinstruments.blogspot.com/2011/09/improved-magnetometer-calibration-part.html
//https://sites.google.com/site/sailboatinstruments1/home
//download and use magneto12.zip
//user defines
#define W_INV_00 1
#define W_INV_01 0
#define W_INV_02 0
#define W_INV_10 0
#define W_INV_11 1
#define W_INV_12 0
#define W_INV_20 0
#define W_INV_21 0
#define W_INV_22 1
#define MAG_OFF_X 0
#define MAG_OFF_Y 0
#define MAG_OFF_Z 0
//the offset is 1/2 the difference between the max and the min
#define ACC_OFF_X 0
#define ACC_OFF_Y 0
#define ACC_OFF_Z 0
//the scale factor is the 9.8/(max - offset)
#define ACC_SCALE_X ACC_SCALE_FACTOR_D_6
#define ACC_SCALE_Y ACC_SCALE_FACTOR_D_6
#define ACC_SCALE_Z ACC_SCALE_FACTOR_D_6
//#define USE_USER_CAL
//end user defines
#define X_ 0
#define Y_ 1
#define Z_ 2
#define NUMBER_SAMPLES_FOR_AVG 50
float groScaled[3];
float accScaled[3];
float magScaled[3];
int16_t groRead[3], accRead[3], magRead[3];
float gyroOffSets[3] = { 0, 0, 0 };
float gyroScaleFactor[3] = { GYRO_SCALE_FACTOR, GYRO_SCALE_FACTOR,
GYRO_SCALE_FACTOR };
float accOffSets[3] = { ACC_OFF_X, ACC_OFF_Y, ACC_OFF_Z };
float accScaleFactor[3] = { ACC_SCALE_X, ACC_SCALE_Y, ACC_SCALE_Z };
float magOffSets[3] = { MAG_OFF_X, MAG_OFF_Y, MAG_OFF_Z };
//ellipsoid fit matrix
float magScaleMatrix[3][3] = { { W_INV_00, W_INV_01, W_INV_02 },
{ W_INV_10, W_INV_11, W_INV_12 },
{ W_INV_20, W_INV_21, W_INV_22 } };
uint32_t tau;
uint32_t currentTime, previousTime;
float dt;
//AHRS vars
float q0q0, q1q1, q2q2, q3q3, q0q1, q0q2, q0q3, q1q2, q1q3, q2q3;
float acc_x, acc_y, acc_z, mag_x, mag_y, mag_z, gro_x, gro_y, gro_z;
float yawInDegrees, pitchInDegrees, rollInDegrees;
float yawInRadians, pitchInRadians, rollInRadians;
float R11, R12, R13, R21, R22, R23, R31, R32, R33;
float q0 = 1, q1 = 0, q2 = 0, q3 = 0;
float initialAccMagnitude;
float kpAcc = 0.1;
float kiAcc = 0.0;
float kpMag = 0.1;
float kiMag = 0.0;
float feedbackLimit = 0.25;
uint32_t displayTimer;
void setup() {
Serial.begin(115200);
Serial.println("Keeping the device still and level during startup will yield the best results");
Wire.begin();
Wire.setClock(400000);
//todo include gyro offset cal at startup
InitSensors();
#ifdef OUTPUT_FOR_CAL
OutputForCalibration();
#endif//OUTPUT_FOR_CAL
GetOffsetsAndInitialQuat();
previousTime = micros();
displayTimer = millis();
}
void loop() {
currentTime = micros();
if (currentTime - previousTime >= tau) {
dt = (currentTime - previousTime) * 0.000001;
previousTime = currentTime;
PollSensors();
AHRS();
}
if (millis() - displayTimer > 250) {
displayTimer = millis();
GetEuler();
Serial.print("!ANG:");
Serial.print(rollInDegrees);
Serial.print(",");
Serial.print(pitchInDegrees);
Serial.print(",");
Serial.print(yawInDegrees);
Serial.println();
}
}
void SetGyroAccMag() {
int32_t gyroSumX = 0, gyroSumY = 0, gyroSumZ = 0;
int32_t accSumX = 0, accSumY = 0, accSumZ = 0;
int32_t magSumX = 0, magSumY = 0, magSumZ = 0;
float avgX, avgY, avgZ;
PollSensors();
StationaryGyro();
delay(10);
for (uint16_t i = 0; i < NUMBER_SAMPLES_FOR_AVG; i++) {
PollSensors();
gyroSumX += groRead[X_];
gyroSumY += groRead[Y_];
gyroSumZ += groRead[Z_];
accSumX += accScaled[X_];
accSumY += accScaled[Y_];
accSumZ += accScaled[Z_];
magSumX += magScaled[X_];
magSumY += magScaled[Y_];
magSumZ += magScaled[Z_];
if (StationaryGyro() == false) {
gyroSumX = groRead[X_];
gyroSumY = groRead[Y_];
gyroSumZ = groRead[Z_];
accSumX += accScaled[X_];
accSumY += accScaled[Y_];
accSumZ += accScaled[Z_];
magSumX += magScaled[X_];
magSumY += magScaled[Y_];
magSumZ += magScaled[Z_];;
i = 1;
}
delay(3);
}
gyroOffSets[X_] = gyroSumX / NUMBER_SAMPLES_FOR_AVG;
gyroOffSets[Y_] = gyroSumY / NUMBER_SAMPLES_FOR_AVG;
gyroOffSets[Z_] = gyroSumZ / NUMBER_SAMPLES_FOR_AVG;
avgX = accSumX / NUMBER_SAMPLES_FOR_AVG;
avgY = accSumY / NUMBER_SAMPLES_FOR_AVG;
avgZ = accSumZ / NUMBER_SAMPLES_FOR_AVG;
accScaled[X_] = avgX;
accScaled[Y_] = avgY;
accScaled[Z_] = avgZ;
initialAccMagnitude = sqrt(avgX * avgX + avgY * avgY + avgZ * avgZ);
avgX = magSumX / NUMBER_SAMPLES_FOR_AVG;
avgY = magSumY / NUMBER_SAMPLES_FOR_AVG;
avgZ = magSumZ / NUMBER_SAMPLES_FOR_AVG;
magScaled[X_] = avgX;
magScaled[Y_] = avgY;
magScaled[Z_] = avgZ;
}
void GetOffsetsAndInitialQuat() {
float magnitude;
float bx, by;
SetGyroAccMag();
SetVariables();
//calculate the ypr from sensors convert to quaternion and rotation matrix
pitchInRadians = atan2(-acc_x, sqrt(acc_y * acc_y + acc_z * acc_z));
rollInRadians = atan2(acc_y, acc_z);
yawInRadians = 0;
q0 = cos(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* cos(yawInRadians / 2.0)- sin(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* sin(yawInRadians / 2.0);
q1 = sin(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* cos(yawInRadians / 2.0)+ cos(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* sin(yawInRadians / 2.0);
q2 = cos(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* cos(yawInRadians / 2.0)- sin(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* sin(yawInRadians / 2.0);
q3 = cos(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* sin(yawInRadians / 2.0)+ sin(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* cos(yawInRadians / 2.0);
magnitude = sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 = q0 / magnitude;
q1 = q1 / magnitude;
q2 = q2 / magnitude;
q3 = q3 / magnitude;
GenerateRotationMatrix();
GetEuler();
bx = mag_x * cos(pitchInRadians)+ mag_y * sin(pitchInRadians) * sin(rollInRadians)+ mag_z * sin(pitchInRadians) * cos(rollInRadians);
by = mag_z * sin(rollInRadians) - mag_y * cos(rollInRadians);
yawInRadians = atan2(by, bx);
q0 = cos(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* cos(yawInRadians / 2.0)- sin(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* sin(yawInRadians / 2.0);
q1 = sin(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* cos(yawInRadians / 2.0)+ cos(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* sin(yawInRadians / 2.0);
q2 = cos(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* cos(yawInRadians / 2.0)- sin(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* sin(yawInRadians / 2.0);
q3 = cos(rollInRadians / 2.0) * cos(pitchInRadians / 2.0)* sin(yawInRadians / 2.0)+ sin(rollInRadians / 2.0) * sin(pitchInRadians / 2.0)* cos(yawInRadians / 2.0);
magnitude = sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 = q0 / magnitude;
q1 = q1 / magnitude;
q2 = q2 / magnitude;
q3 = q3 / magnitude;
GenerateRotationMatrix();
GetEuler();
}
bool StationaryGyro() {
static int16_t gyroPrevX = 0, gyroPrevY = 0, gyroPrevZ = 0;
boolean stationary;
if ( abs(gyroPrevX - groRead[X_]) > 100 || abs(gyroPrevY - groRead[Y_]) > 100|| abs(gyroPrevZ - groRead[Z_]) > 100) {
stationary = false;
} else {
stationary = true;
}
gyroPrevX = groRead[X_];
gyroPrevY = groRead[Y_];
gyroPrevZ = groRead[Z_];
return stationary;
}
void SetVariables() {
acc_x = -accScaled[X_];
acc_y = -accScaled[X_];
acc_z = -accScaled[X_];
mag_x = magScaled[X_];
mag_y = magScaled[Y_];
mag_z = magScaled[Z_];
gro_x = groScaled[X_];
gro_y = groScaled[Y_];
gro_z = groScaled[Z_];
}
void GenerateRotationMatrix() {
q0q0 = q0 * q0;
q1q1 = q1 * q1;
q2q2 = q2 * q2;
q3q3 = q3 * q3;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q3 = q2 * q3;
R11 = 2.0 * (q0q0 - 0.5 + q1q1);
R12 = 2.0 * (q1q2 + q0q3);
R13 = 2.0 * (q1q3 - q0q2);
R21 = 2.0 * (q1q2 - q0q3);
R22 = 2.0 * (q0q0 - 0.5 + q2q2);
R23 = 2.0 * (q2q3 + q0q1);
R31 = 2.0 * (q1q3 + q0q2);
R32 = 2.0 * (q2q3 - q0q1);
R33 = 2.0 * (q0q0 - 0.5 + q3q3);
}
void GetPitch() {
pitchInRadians = asin(2.0 * (q0 * q2 - q3 * q1));
pitchInDegrees = pitchInRadians * RAD_TO_DEG;
}
void GetRoll() {
rollInRadians = atan2(2 * (q0 * q1 + q2 * q3),1 - 2.0 * (q1 * q1 + q2 * q2));
rollInDegrees = rollInRadians * RAD_TO_DEG;
}
void GetYaw() {
yawInRadians = atan2(2.0 * (q0 * q3 + q1 * q2),1 - 2.0 * (q2 * q2 + q3 * q3));
yawInDegrees = yawInRadians * RAD_TO_DEG;
if (yawInDegrees < 0){
yawInDegrees +=360;
}
if (yawInDegrees > 360){
yawInDegrees -=360;
}
}
void GetEuler() {
GetPitch();
GetRoll();
GetYaw();
}
void AHRS() {
//the Mahoney filter
static float integralFBX = 0, integralFBY = 0, integralFBZ = 0;
float magnitude, recipNorm;
float qa, qb, qc;
float kiDTAcc, kiDTMag, dtby2;
float bx, bz, wx, wy, wz, vx, vy, vz;
float hx, hy, hz, exm, eym, ezm, exa, eya, eza;
float magnitudeDifference;
SetVariables();
//todo add check for stationary gyro
magnitude = sqrt(acc_x * acc_x + acc_y * acc_y + acc_z * acc_z);
magnitudeDifference = fabs(initialAccMagnitude - magnitude);
if (magnitudeDifference < feedbackLimit) {
recipNorm = 1.0 / magnitude;
acc_x *= recipNorm;
acc_y *= recipNorm;
acc_z *= recipNorm;
recipNorm = 1.0 / sqrt(mag_x * mag_x + mag_y * mag_y + mag_z * mag_z);
mag_x *= recipNorm;
mag_y *= recipNorm;
mag_z *= recipNorm;
hx = R11 * mag_x + R21 * mag_y + R31 * mag_z;
hy = R12 * mag_x + R22 * mag_y + R32 * mag_z;
hz = R13 * mag_x + R23 * mag_y + R33 * mag_z;
bx = sqrt(hx * hx + hy * hy);
bz = hz;
wx = R11 * bx + R13 * bz;
wy = R21 * bx + R23 * bz;
wz = R31 * bx + R33 * bz;
exm = (mag_y * wz - mag_z * wy);
eym = (mag_z * wx - mag_x * wz);
ezm = (mag_x * wy - mag_y * wx);
vx = R13;
vy = R23;
vz = R33;
exa = (acc_y * vz - acc_z * vy);
eya = (acc_z * vx - acc_x * vz);
eza = (acc_x * vy - acc_y * vx);
kiDTAcc = kiAcc * dt;
kiDTMag = kiMag * dt;
if (kiAcc > 0) {
integralFBX += exa * kiDTAcc + exm * kiDTMag;
integralFBY += eya * kiDTAcc + eym * kiDTMag;
integralFBZ += eza * kiDTAcc + ezm * kiDTMag;
gro_x = gro_x + integralFBX;
gro_y = gro_y + integralFBY;
gro_z = gro_z + integralFBZ;
} else {
integralFBX = 0;
integralFBY = 0;
integralFBZ = 0;
}
gro_x += exa * kpAcc + exm * kpMag;
gro_y += eya * kpAcc + eym * kpMag;
gro_z += eza * kpAcc + ezm * kpMag;
}
dtby2 = dt * 0.5;
qa = q0;
qb = q1;
qc = q2;
q0 += -1.0 * dtby2 * (gro_x * qb + gro_y * qc + gro_z * q3);
q1 += dtby2 * (gro_x * qa - gro_y * q3 + gro_z * qc);
q2 += dtby2 * (gro_x * q3 + gro_y * qa - gro_z * qb);
q3 += dtby2 * (gro_y * qb - gro_x * qc + gro_z * qa);
//normalize the quaternion
recipNorm = 1 / sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
void InitSensors() {
/*
IMU9
v1 L3G4200D LSM303DLM
v2 L3GD20 LSM303DLHC
v3 L3GD20H LSM303D
v4 L3GD20H LSM303D - alt
v5 LSM6DS33 LIS3MDL - alt
*/
//check which IMU is connected
if (L3GOBJ.init() == false) {
if (LSM6OBJ.init() == false) {
while (1) {
Serial.println("init failure");
delay(500);
}
} else {
if (LIS3MDLOBJ.init() == false) {
while (1) {
Serial.println("init failure");
delay(500);
}
}
version5 = true;
}
} else {
if (LSM303OBJ.init() == false) {
while (1) {
Serial.println("init failure");
delay(500);
}
}
}
Serial.println("sensors detected");
//setup device registers for ~100Hz operation
if (version5 == true) {
Serial.print("Device types: ");
switch ((int) LSM6OBJ.getDeviceType()) {
case LSM6OBJ.device_DS33:
Serial.print("device_DS33");
break;
default:
Serial.print("invalid LSM6 type");
break;
}
Serial.print(" , ");
switch ((int) LIS3MDLOBJ.getDeviceType()) {
case LIS3MDLOBJ.device_LIS3MDL:
Serial.print("device_LIS3MDL");
break;
default:
Serial.print("invalid LIS3MDL type");
break;
}
Serial.print("\r\n");
delay(1500);
//ver5 reg setup and DT settings etc
LSM6OBJ.writeReg(LSM6OBJ.CTRL1_XL, 0x48); //104Hz +/- 4g default AA filter
LSM6OBJ.writeReg(LSM6OBJ.CTRL2_G, 0x44); //104Hz 500dps
LIS3MDLOBJ.writeReg(LIS3MDLOBJ.CTRL_REG1, 0xE2); //155Hz UHP fast odr XY
LIS3MDLOBJ.writeReg(LIS3MDLOBJ.CTRL_REG2, 0x00); //+/- 4 gauss
LIS3MDLOBJ.writeReg(LIS3MDLOBJ.CTRL_REG4, 0x0C); //Z axis UHP
LIS3MDLOBJ.writeReg(LIS3MDLOBJ.CTRL_REG3, 0x00); //continuous conversion mode
accScaleFactor[X_] = ACC_SCALE_FACTOR_D_6;
accScaleFactor[Y_] = ACC_SCALE_FACTOR_D_6;
accScaleFactor[Z_] = ACC_SCALE_FACTOR_D_6;
tau = 10000;
return;
}
Serial.print("Device types: ");
switch ((int) L3GOBJ.getDeviceType()) {
case L3GOBJ.device_4200D:
Serial.print("device_4200D");
break;
case L3GOBJ.device_D20:
Serial.print("device_D20");
break;
case L3GOBJ.device_D20H:
Serial.print("device_D20H");
break;
default:
Serial.print("invalid L3G type");
break;
}
Serial.print(" , ");
switch ((int) LSM303OBJ.getDeviceType()) {
case LSM303OBJ.device_DLH:
Serial.print("device_DLH");
break;
case LSM303OBJ.device_DLM:
Serial.print("device_DLM");
break;
case LSM303OBJ.device_DLHC:
Serial.print("device_DLHC");
break;
case LSM303OBJ.device_D:
Serial.println("device_D");
break;
default:
Serial.print("invalid LSM303 type");
break;
}
Serial.print("\r\n");
delay(1500);
L3GOBJ.writeReg(L3GOBJ.CTRL_REG1, 0x0F); //100hz
L3GOBJ.writeReg(L3GOBJ.CTRL_REG4, 0x10); //500dps
switch ((int) LSM303OBJ.getDeviceType()) {
case LSM303OBJ.device_DLH:
case LSM303OBJ.device_DLM:
LSM303OBJ.writeAccReg(LSM303OBJ.CTRL_REG4_A, 0x10); //Continuous update little endian +/- 4g
LSM303OBJ.writeAccReg(LSM303OBJ.CTRL_REG1_A, 0x2F); //normal 100Hz all axes enabled
LSM303OBJ.writeMagReg(LSM303OBJ.CRA_REG_M, 0x18); //75Hz normal mode
LSM303OBJ.writeMagReg(LSM303OBJ.CRB_REG_M, 0xA0);
LSM303OBJ.writeMagReg(LSM303OBJ.MR_REG_M, 0x00);
accScaleFactor[X_] = ACC_SCALE_FACTOR_Dxx;
accScaleFactor[Y_] = ACC_SCALE_FACTOR_Dxx;
accScaleFactor[Z_] = ACC_SCALE_FACTOR_Dxx;
tau = 13333;
break;
case LSM303OBJ.device_DLHC:
LSM303OBJ.writeAccReg(LSM303OBJ.CTRL_REG4_A, 0x10); //Continuous update little endian +/- 4g
LSM303OBJ.writeAccReg(LSM303OBJ.CTRL_REG1_A, 0x57); //normal 100Hz all axes enabled
LSM303OBJ.writeMagReg(LSM303OBJ.CRA_REG_M, 0x98); //75Hz temp compensation enabled
LSM303OBJ.writeMagReg(LSM303OBJ.CRB_REG_M, 0xA0);
LSM303OBJ.writeMagReg(LSM303OBJ.MR_REG_M, 0x00);
accScaleFactor[X_] = ACC_SCALE_FACTOR_Dxx;
accScaleFactor[Y_] = ACC_SCALE_FACTOR_Dxx;
accScaleFactor[Z_] = ACC_SCALE_FACTOR_Dxx;
tau = 13333;
break;
case LSM303OBJ.device_D:
//mag sensitivity is the same for XYZ
LSM303OBJ.writeAccReg(LSM303OBJ.CTRL2, 0x08); //default AA filter +/- 4g 4 wire SPI
LSM303OBJ.writeAccReg(LSM303OBJ.CTRL1, 0x67); //100Hz Continuous update all axes enabled
LSM303OBJ.writeMagReg(LSM303OBJ.CTRL5, 0xF4); //100Hz high res
LSM303OBJ.writeMagReg(LSM303OBJ.CTRL6, 0x20); // +/- 4 gauss
LSM303OBJ.writeMagReg(LSM303OBJ.CTRL7, 0x00);
accScaleFactor[X_] = ACC_SCALE_FACTOR_D_6;
accScaleFactor[Y_] = ACC_SCALE_FACTOR_D_6;
accScaleFactor[Z_] = ACC_SCALE_FACTOR_D_6;
tau = 10000;
break;
}
Serial.println("config complete");
#ifdef USE_USER_CAL
accScaleFactor[X_] = ACC_SCALE_X;
accScaleFactor[Y_] = ACC_SCALE_Y;
accScaleFactor[Z_] = ACC_SCALE_Z;
#endif
}
void PollSensors() {
int16_t shiftedMag[3];
if (version5 == false) {
L3GOBJ.read();
LSM303OBJ.readMag();
LSM303OBJ.readAcc();
groRead[X_] = L3GOBJ.g.x;
groRead[Y_] = L3GOBJ.g.y;
groRead[Z_] = L3GOBJ.g.z;
accRead[X_] = LSM303OBJ.a.x;
accRead[Y_] = LSM303OBJ.a.y;
accRead[Z_] = LSM303OBJ.a.z;
magRead[X_] = LSM303OBJ.m.x;
magRead[Y_] = LSM303OBJ.m.y;
magRead[Z_] = LSM303OBJ.m.z;
if (LSM303OBJ.getDeviceType() < LSM303OBJ.device_DLHC) {
accRead[X_] = accRead[X_] >> 4;
accRead[Y_] = accRead[Y_] >> 4;
accRead[Z_] = accRead[Z_] >> 4;
}
} else {
LSM6OBJ.readAcc();
LSM6OBJ.readGyro();
LIS3MDLOBJ.read();
groRead[X_] = LSM6OBJ.g.x;
groRead[Y_] = LSM6OBJ.g.y;
groRead[Z_] = LSM6OBJ.g.z;
accRead[X_] = LSM303OBJ.a.x;
accRead[Y_] = LSM303OBJ.a.y;
accRead[Z_] = LSM303OBJ.a.z;
magRead[X_] = LIS3MDLOBJ.m.x;
magRead[Y_] = LIS3MDLOBJ.m.y;
magRead[Z_] = LIS3MDLOBJ.m.z;
}
groScaled[X_] = gyroScaleFactor[X_] * (groRead[X_] - gyroOffSets[X_])* DEG_TO_RAD;
groScaled[Y_] = gyroScaleFactor[Y_] * (groRead[Y_] - gyroOffSets[Y_])* DEG_TO_RAD;
groScaled[Z_] = gyroScaleFactor[Z_] * (groRead[Z_] - gyroOffSets[Z_])* DEG_TO_RAD;
accScaled[X_] = accScaleFactor[X_] * (accRead[X_] - accOffSets[X_]);
accScaled[Y_] = accScaleFactor[Y_] * (accRead[Y_] - accOffSets[Y_]);
accScaled[Z_] = accScaleFactor[Z_] * (accRead[Z_] - accOffSets[Z_]);
shiftedMag[X_] = magRead[X_] - magOffSets[X_];
shiftedMag[Y_] = magRead[Y_] - magOffSets[Y_];
shiftedMag[Z_] = magRead[Z_] - magOffSets[Z_];
magScaled[X_] = magScaleMatrix[X_][X_] * shiftedMag[X_]+ magScaleMatrix[X_][Y_] * shiftedMag[Y_]+ magScaleMatrix[X_][Z_] * shiftedMag[Z_];
magScaled[Y_] = magScaleMatrix[Y_][X_] * shiftedMag[X_]+ magScaleMatrix[Y_][Y_] * shiftedMag[Y_]+ magScaleMatrix[Y_][Z_] * shiftedMag[Z_];
magScaled[Z_] = magScaleMatrix[Z_][X_] * shiftedMag[X_]+ magScaleMatrix[Z_][Y_] * shiftedMag[Y_]+ magScaleMatrix[Z_][Z_] * shiftedMag[Z_];
}
void OutputForCalibration() {
while (1) {
PollSensors();
#ifdef OUTPUT_MAG_FOR_CAL
Serial.print(magRead[X_]);
Serial.print(" ");
Serial.print(magRead[Z_]);
Serial.print(" ");
Serial.print(magRead[Y_]);
Serial.print("\r\n");
#endif//OUTPUT_MAG_FOR_CAL
#ifdef OUTPUT_ACC_FOR_CAL
Serial.print(millis());
Serial.print(",");
Serial.print(accRead[X_]);
Serial.print(",");
Serial.print(accRead[Y_]);
Serial.print(",");
Serial.print(accRead[Z_]);
Serial.print("\r\n");
#endif//OUTPUT_ACC_FOR_CAL
delay(100);
}
}