forked from caer200/ocelotml_2d
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMolNet.py
81 lines (54 loc) · 2.54 KB
/
MolNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import torch.nn as nn
import json
from collections import defaultdict
#import matplotlib.pyplot as plt
import os
import glob
class MolNet(nn.Module):
def __init__(self, input_nodes=1,hidden_nodes=1,
output_nodes=1,layers=1, activator=None, loss=None, dev="cpu",
with_dropouts = False, only_last_dropout = False, dropout_rate=0.5):
def active_fail():
print(F"Fail! The functions {list(self.chooser.keys())} are supported")
return "Not a supported function"
def loss_fail():
print(F"Fail! The loss functions supported are {list(self.losses.keys())}")
return "Not a supported function"
self.losses = defaultdict(loss_fail)
self.losses["mse"] = nn.MSELoss
self.losses["mae"] = nn.L1Loss
self.chooser = defaultdict(active_fail)
self.chooser["sigmoid"] = nn.Sigmoid()
self.chooser["relu"] = nn.ReLU()
self.chooser["softmax"] = nn.Softmax()
super(MolNet, self).__init__()
self.hidden_layers = nn.ModuleList()
for i in range(layers):
if i == 0:
self.hidden_layers.append(nn.Linear(input_nodes,hidden_nodes))
if with_dropouts:
self.hidden_layers.append(nn.Dropout(p=dropout_rate))
if i != 0:
self.hidden_layers.append(nn.Linear(hidden_nodes,hidden_nodes))
if with_dropouts and i !=0:
self.hidden_layers.append(nn.Dropout(p=dropout_rate))
if only_last_dropout:
self.hidden_layers.append(nn.Dropout(p = dropout_rate))
self.output = nn.Linear(hidden_nodes, output_nodes)
for layer in self.hidden_layers:
if isinstance(layer, torch.nn.modules.dropout.Dropout):
continue
nn.init.xavier_uniform_(layer.weight, gain=nn.init.calculate_gain('relu'))
nn.init.zeros_(layer.bias)
self.activation_function = self.chooser[activator]
self.loss_function = self.losses[loss]
self.my_device = dev
def forward(self, features):
features = features.to(self.my_device)
features = torch.flatten(features, 1)
for layer in range(len(self.hidden_layers)):
features=self.hidden_layers[layer](features)
features = self.activation_function(features)
out = self.output(features)
return out