forked from ecomfe/echarts-stat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclustering.js
272 lines (245 loc) · 8.62 KB
/
clustering.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
define(function (require) {
var dataProcess = require('./util/dataProcess');
var dataPreprocess = dataProcess.dataPreprocess;
var array = require('./util/array');
var arraySize = array.size;
var sumOfColumn = array.sumOfColumn;
var arraySum = array.sum;
var zeros = array.zeros;
var isArray = array.isArray;
var mathSqrt = Math.sqrt;
var mathPow = Math.pow;
/**
* KMeans of clustering algorithm
* @param {Array.<Array.<number>>} data two-dimension array
* @param {number} k the number of clusters in a dataset
* @return {Object}
*/
function kMeans(data, k) {
var size = arraySize(data);
// create array to assign data points to centroids, also holds SE of each point
var clusterAssigned = zeros(size[0], 2);
var centroids = createRandCent(data, k);
var clusterChanged = true;
var minDist;
var minIndex;
var distIJ;
var ptsInClust;
while (clusterChanged) {
clusterChanged = false;
for (var i = 0; i < size[0]; i++) {
minDist = Infinity;
minIndex = -1;
for (var j = 0; j < k; j++) {
distIJ = distEuclid(data[i], centroids[j]);
if (distIJ < minDist) {
minDist = distIJ;
minIndex = j;
}
}
if (clusterAssigned[i][0] !== minIndex) {
clusterChanged = true;
}
clusterAssigned[i][0] = minIndex;
clusterAssigned[i][1] = mathPow(minDist, 2);
}
//recalculate centroids
for (var i = 0; i < k; i++) {
ptsInClust = [];
for (var j = 0; j < clusterAssigned.length; j++) {
if (clusterAssigned[j][0] === i) {
ptsInClust.push(data[j]);
}
}
centroids[i] = meanInColumns(ptsInClust);
}
}
var clusterWithKmeans = {
centroids: centroids,
clusterAssigned: clusterAssigned
};
return clusterWithKmeans;
}
/**
* Calculate the average of each column in a two-dimensional array
* and returns the values as an array.
* @param {Array.<Array>} dataList two-dimensional array
* @return {Array}
*/
function meanInColumns(dataList) {
var size = arraySize(dataList);
var meanArray = [];
var sum;
var mean;
for (var j = 0; j < size[1]; j++) {
sum = 0;
for (var i = 0; i < size[0]; i++) {
sum += dataList[i][j];
}
mean = sum / size[0];
meanArray.push(mean);
}
return meanArray;
}
/**
* The combine of hierarchical clustering and k-means.
* @param {Array} data two-dimension array.
* @param {[type]} k the number of clusters in a dataset. It has to be greater than 1.
* @param {boolean} stepByStep
* @return {}
*/
function hierarchicalKMeans(data, k, stepByStep) {
if (k < 2 ) {
return;
}
var dataSet = dataPreprocess(data);
var size = arraySize(dataSet);
var clusterAssment = zeros(size[0], 2);
// initial center point
var centroid0 = meanInColumns(dataSet);
var centList = [centroid0];
var squareError;
for (var i = 0; i < size[0]; i++) {
squareError = distEuclid(dataSet[i], centroid0);
clusterAssment[i][1] = mathPow(squareError, 2);
}
var lowestSSE;
var ptsInClust;
var ptsNotClust;
var clusterInfo;
var sseSplit;
var sseNotSplit;
var index = 1;
var result = {
isEnd: false
};
function oneStep() {
//the existing clusters are continuously divided
//until the number of clusters is k
if (index < k) {
lowestSSE = Infinity;
var centSplit;
var newCentroid;
var newClusterAss;
for (var j = 0; j < centList.length; j++) {
ptsInClust = [];
ptsNotClust = [];
for (var i = 0; i < clusterAssment.length; i++) {
if (clusterAssment[i][0] === j) {
ptsInClust.push(dataSet[i]);
}
else {
ptsNotClust.push(clusterAssment[i][1]);
}
}
clusterInfo = kMeans(ptsInClust, 2);
sseSplit = sumOfColumn(clusterInfo.clusterAssigned, 1);
sseNotSplit = arraySum(ptsNotClust);
if (sseSplit + sseNotSplit < lowestSSE) {
lowestSSE = sseNotSplit + sseSplit;
centSplit = j;
newCentroid = clusterInfo.centroids;
newClusterAss = clusterInfo.clusterAssigned;
}
}
for (var i = 0; i < newClusterAss.length; i++) {
if (newClusterAss[i][0] === 0) {
newClusterAss[i][0] = centSplit;
}
else if (newClusterAss[i][0] === 1) {
newClusterAss[i][0] = centList.length;
}
}
centList[centSplit] = newCentroid[0];
centList.push(newCentroid[1]);
for ( i = 0, j = 0; i < clusterAssment.length && j < newClusterAss.length; i++) {
if (clusterAssment[i][0] === centSplit) {
clusterAssment[i][0] = newClusterAss[j][0];
clusterAssment[i][1] = newClusterAss[j++][1];
}
}
var pointInClust = [];
for (var i = 0; i < centList.length; i++) {
pointInClust[i] = [];
for (var j = 0; j < clusterAssment.length; j++) {
if (clusterAssment[j][0] === i) {
pointInClust[i].push(dataSet[j]);
}
}
}
result.clusterAssment = clusterAssment;
result.centroids = centList;
result.pointsInCluster = pointInClust;
index++;
}
else {
result.isEnd = true;
}
return result;
}
var step = {
next: oneStep
};
if (!stepByStep) {
var result;
while (!(result = step.next()).isEnd);
return result;
}
else {
return step;
}
}
/**
* Create random centroid of kmeans.
* @param {Array.<number>} dataSet two-dimension array
* @param {number} k the number of centroids to be created
* @return {Array.<number>} random centroids of kmeans
*/
function createRandCent(dataSet, k) {
var size = arraySize(dataSet);
//constructs a two-dimensional array with all values 0
var centroids = zeros(k, size[1]);
var minJ;
var maxJ;
var rangeJ;
//create random cluster centers, within bounds of each dimension
for (var j = 0; j < size[1]; j++) {
minJ = dataSet[0][j];
maxJ = dataSet[0][j];
for (var i = 1; i < size[0]; i++) {
if (dataSet[i][j] < minJ) {
minJ = dataSet[i][j];
}
if (dataSet[i][j] > maxJ) {
maxJ = dataSet[i][j];
}
}
rangeJ = maxJ - minJ;
for (var i = 0; i < k; i++) {
centroids[i][j] = minJ + rangeJ * Math.random();
}
}
return centroids;
}
/**
* Distance method for calculating similarity
* @param {Array.<number>} vec1
* @param {Array.<nnumber>} vec2
* @return {number}
*/
function distEuclid(vec1, vec2) {
if (!isArray(vec1) && !isArray(vec2)) {
return mathSqrt(mathPow(vec1 - vec2, 2));
}
var powerSum = 0;
//subtract the corresponding elements in the vectors
for (var i = 0; i < vec1.length; i++) {
powerSum += mathPow(vec1[i] - vec2[i], 2);
}
return mathSqrt(powerSum);
}
return {
kMeans: kMeans,
hierarchicalKMeans: hierarchicalKMeans
};
});