-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis.py
411 lines (288 loc) · 18.7 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import joblib
import yaml
from datetime import datetime
import os
import shutil
import seaborn as sns
import pickle
from pickle import dump
from scipy.signal import find_peaks
from sklearn import metrics
from sklearn.model_selection import cross_val_score
from sklearn.metrics import r2_score
from mpl_toolkits.mplot3d import Axes3D
import collections
import multiprocessing
from multiprocessing import Pool
class Analysis:
def calculate_save_rmsle(self):
self.all_test_rmsle = [[self.rmsle(self.y_train, self.all_train_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
self.all_train_rmsle = [[self.rmsle(self.y_test, self.all_test_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
dict_test_rmsle = {}
for t, transform in enumerate(self.feature_transformations):
dict_test_rmsle[str(self.transform_names[t])] = self.all_test_rmsle[t]
df_test_rmsle = pd.DataFrame.from_dict(dict_test_rmsle,
orient='index',
columns=self.models)
self.df_test_rmsle = df_test_rmsle.copy()
df_test_rmsle.to_csv(f"{self.path}/df_test_RMSLE_matrix.csv", float_format='%.3f')
print("Test RMSLE", self.df_test_rmsle)
dict_train_rmsle = {}
for t, transform in enumerate(self.feature_transformations):
dict_train_rmsle[str(self.transform_names[t])] = self.all_train_rmsle[t]
df_train_rmsle = pd.DataFrame.from_dict(dict_train_rmsle,
orient='index',
columns=self.models)
self.df_train_rmsle = df_train_rmsle.copy()
df_train_rmsle.to_csv(f"{self.path}/df_train_RMSLE_matrix.csv", float_format='%.3f')
#print("Train RMSLE", self.df_train_rmsle)
def rmse(self, y_true, y_pred):
return np.sqrt(np.sum(np.abs(y_pred - y_true)))
def calculate_save_rmse(self):
self.all_test_rmse = [[self.rmse(self.y_train, self.all_train_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
self.all_train_rmse = [[self.rmse(self.y_test, self.all_test_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
dict_test_rmse = {}
for t, transform in enumerate(self.feature_transformations):
dict_test_rmse[str(self.transform_names[t])] = self.all_test_rmse[t]
df_test_rmse = pd.DataFrame.from_dict(dict_test_rmse,
orient='index',
columns=self.models)
self.df_test_rmse = df_test_rmse.copy()
df_test_rmse.to_csv(f"{self.path}/df_test_RMSE_matrix.csv", float_format='%.3f')
print("Test RMSE", self.df_test_rmse)
dict_train_rmse = {}
for t, transform in enumerate(self.feature_transformations):
dict_train_rmse[str(self.transform_names[t])] = self.all_train_rmse[t]
df_train_rmse = pd.DataFrame.from_dict(dict_train_rmse,
orient='index',
columns=self.models)
self.df_train_rmse = df_train_rmse.copy()
df_train_rmse.to_csv(f"{self.path}/df_train_RMSE_matrix.csv", float_format='%.3f')
###########3
# R2 coefficient_of_dermination = r2_score(y, p(x))
self.all_test_r2 = [[r2_score(self.y_train, self.all_train_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
self.all_train_r2 = [[r2_score(self.y_test, self.all_test_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
dict_test_r2 = {}
for t, transform in enumerate(self.feature_transformations):
dict_test_r2[str(self.transform_names[t])] = self.all_test_r2[t]
df_test_r2 = pd.DataFrame.from_dict(dict_test_r2,
orient='index',
columns=self.models)
self.df_test_r2 = df_test_r2.copy()
df_test_r2.to_csv(f"{self.path}/df_test_r2_matrix.csv", float_format='%.3f')
print("Test R2", self.df_test_rmse)
dict_train_r2 = {}
for t, transform in enumerate(self.feature_transformations):
dict_train_r2[str(self.transform_names[t])] = self.all_train_r2[t]
df_train_r2 = pd.DataFrame.from_dict(dict_train_r2,
orient='index',
columns=self.models)
self.df_train_r2 = df_train_r2.copy()
df_train_r2.to_csv(f"{self.path}/df_train_r2_matrix.csv", float_format='%.3f')
#print("Train RMSLE", self.df_train_rmsle)
def calculate_error(self):
# y_test_all = [[self.y_test for i in np.zeros_like(self.all_test_predictions)]
# to work on: make 3d array with y_test for easier absolute difference to get errors
self.all_test_errors = [[np.abs(self.y_test - self.all_test_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
self.all_train_errors = [[np.abs(self.y_train - self.all_train_predictions[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
self.all_test_performances = [[np.mean(self.all_test_errors[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
self.all_train_performances = [[np.mean(self.all_train_errors[t][i]) for i in range(len(self.models))] for t in range(len(self.feature_transformations))]
def rmsle(self, y_true, y_pred):
sum_ = np.sum( np.log((y_pred + 1)/(y_true + 1))**2 )
return np.sqrt((1/len(y_true)) * sum_ )
def save_error(self):
# save quantitative performances and errors and percent error
self.all_df_errors = []
for t in range(len(self.feature_transformations)):
transform_df_errors = []
for i, model in enumerate(self.models):
model_path = self.model_paths[t][i]
# train df
df_train = self.df_y_train.copy()
df_train["Predicted"] = self.all_train_predictions[t][i]
df_train["Absolute error"] = self.all_train_errors[t][i]
df_train["Train/Test"] = "Train"
# test df
df_test = self.df_y_test.copy()
df_test["Predicted"] = self.all_test_predictions[t][i]
df_test["Absolute error"] = self.all_test_errors[t][i]
df_test["Train/Test"] = "Test"
# merge train and test
df_error = pd.concat([df_train, df_test])
df_error["Percent error"] = 100*(df_error["Absolute error"].astype(float))/df_error[str(self.target)].astype(float)
# df_error["RMSLE"] = [rmsle(df_error[str(self.target)].astype(float), pred) for ]
# add id columns
df_error = df_error.join(self.df_id)
# save in model path folder
df_error.to_csv(f"{model_path}/df_error.csv", float_format='%.3f')
transform_df_errors.append(df_error)
self.all_df_errors.append(transform_df_errors)
def save_test_performance_df(self):
dict_test_perf = {}
for t, transform in enumerate(self.feature_transformations):
dict_test_perf[str(self.transform_names[t])] = self.all_test_performances[t]
df_test_perf = pd.DataFrame.from_dict(dict_test_perf,
orient='index',
columns=self.models)
self.df_test_perf = df_test_perf.copy()
df_test_perf.to_csv(f"{self.path}/df_test_MAE_matrix.csv", float_format='%.3f')
# print("Test MAE", self.df_test_perf)
dict_train_perf = {}
for t, transform in enumerate(self.feature_transformations):
dict_train_perf[str(self.transform_names[t])] = self.all_train_performances[t]
df_train_perf = pd.DataFrame.from_dict(dict_train_perf,
orient='index',
columns=self.models)
self.df_train_perf = df_train_perf.copy()
df_train_perf.to_csv(f"{self.path}/df_train_MAE_matrix.csv", float_format='%.3f')
#print("Train MAE", self.df_train_perf)
# cross validation perf saved
dict_cv = {}
for t, transform in enumerate(self.feature_transformations):
dict_cv[str(self.transform_names[t])] = -1.0 * self.all_cv_scores[t]
df_cv = pd.DataFrame.from_dict(dict_cv,
orient='index',
columns=self.models)
self.df_cv = df_cv.copy()
df_cv.to_csv(f"{self.path}/df_CV_score_{self.scoring}_matrix.csv", float_format='%.3f')
# print("CV score", df_cv)
return None
def corr_features(self, df, corr_type="pearson", abs_=True):
if abs_ == True:
corr_matrix = df.corr(method=str(corr_type)).abs()
else:
corr_matrix = df.corr(method=str(corr_type))
corrs = (corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(np.bool))
.stack()
.sort_values(ascending=False))
# print(corrs) # can see greatest abs corr is removed each time in while loop
return corrs
def get_all_reduced_features(self, max_corr, corr_type="pearson", plot_corr=False):
for t in range(len(self.feature_transformations)):
label = f"{self.transform_names[t]}"
if len(self.df_trains_transformed[t].columns) < 300:
red_ftrs, corr_pairs = self.reduced_features_rm_corr(self.df_trains_transformed[t], max_corr, corr_type = corr_type)
self.write_feature_list(red_ftrs, f"{self.data_plot_path}/{label}_reduced_ftrs_{corr_type}_max_{max_corr*100}.txt")
# red_ftrs.to_csv(f"{self.data_plot_path}/{label}_sorted_corr_reduced_ftrs_{corr_type}_max_{max_corr*100}.csv", float_format='%.3f')
# plot correlated pairs
if plot_corr == True:
for corr_pair in corr_pairs:
# plot correlation
self.plot_ftr_ftr(int(corr_pair[0]), int(corr_pair[1]))
return None
def reduced_features_rm_corr(self, df, max_corr, corr_type = "pearson"):
df = df.apply(pd.to_numeric, errors="ignore")
# remove target from df
df = df.drop(str(self.target), axis=1)
corrs = self.corr_features(df, corr_type=corr_type)
corr_pairs = []
while float(corrs[0]) >= float(max_corr):
# get smaller wavenumber from dataframe, get corrs again
left_ftr = float(corrs.iloc[[0]].index[0][0])
right_ftr = float(corrs.iloc[[0]].index[0][1])
less_ftr = min(left_ftr, right_ftr)
# print(less_ftr)
# print(type(less_ftr))
# print(df.columns)
# print(type(df.columns))
# plot correlation
corr_pairs.append([int(left_ftr), int(right_ftr)])
# remove feature
try:
df = df.drop(less_ftr, axis=1)
except:
df = df.drop(str(int(less_ftr)), axis=1)
# check new correlations
corrs = self.corr_features(df, corr_type=corr_type)
reduced_ftrs = df.columns.values.tolist()
return reduced_ftrs, corr_pairs
def write_feature_list(self, features, path):
# save list of features to copy to another input file
with open(f"{path}_list.txt", "w") as f:
for idx, ftr in enumerate(features):
f.write(f"'{ftr}', ")
def note_important_features(self):
# save list of nonzero wts for lasso and elasticnet
# output RF, adaboost feature importances
# possibly output tpot feature importances ?
# or also save in one doc for easy comparison
for t, transform in enumerate(self.feature_transformations):
for i, model in enumerate(self.models):
model_path = self.model_paths[t][i]
if model in ["Lasso", "ElasticNet", "Ridge", "LinearRegression"]: # uses weights because linear regression
tuned_model = self.all_tuned_models[t][i]
coeffs = tuned_model.coef_
features = list(self.df_trains_transformed[t].columns)
features.remove(self.target)
weights = [coeff for coeff in coeffs] # was absolute
sorted_features = [x for _,x in sorted(zip(weights,features), reverse=True)]
sorted_weights = sorted(weights, reverse=True)
df_weights = pd.DataFrame(list(zip(sorted_features, sorted_weights)), columns=["Feature", "Weight"])
df_weights.to_csv(f"{model_path}/feature_weights.csv", float_format='%.3f')
self.feature_importance(weights, features, model_path)
# save list of features to copy to another input file
with open(f"{model_path}/feature_list.txt", "w") as f:
for idx, ftr in enumerate(features):
if float(weights[idx]) != 0.0:
f.write(f"'{ftr}', ")
elif model in ["RandomForest", "AdaBoost", "DecisionTree"]: # uses feature importances bc tree-based algorithm
tuned_model = self.all_tuned_models[t][i]
importances = tuned_model.feature_importances_
features = list(self.df_trains_transformed[t].columns)
features.remove(self.target)
sorted_features = [x for _,x in sorted(zip(importances,features), reverse=True)]
sorted_importances = sorted(importances, reverse=True)
df_importances = pd.DataFrame(list(zip(sorted_features, sorted_importances)), columns=["Feature", "Importance"])
df_importances.to_csv(f"{model_path}/feature_importances.csv", float_format='%.3f')
self.feature_importance(importances, features, model_path)
# save list of features to copy to another input file
with open(f"{model_path}/feature_list.txt", "w") as f:
for idx, ftr in enumerate(features):
if float(importances[idx]) != 0.0:
f.write(f"'{ftr}', ")
def plot_performances(self):
for t, transform in enumerate(self.feature_transformations):
self.box_performances_sns(t,
by="Algorithm")
self.box_performances_sns(t,
by="Algorithm",
plot_type="bar")
self.bar_CV_test(t,
by="Algorithm")
# turn on for violin plots as well
# self.box_performances_sns(t
# by="Algorithm",
# plot_type="violinsplit")
for i in range(len(self.models)):
model_path = self.model_paths[t][i]
# self.pres_parity_plot(self.all_test_predictions[t][i],
# self.all_train_predictions[t][i],
# model_path)
self.parity_plot(self.all_test_predictions[t][i],
self.all_train_predictions[t][i],
model_path)
# plot parity plots for specific fuels
for additive in self.blend_additives:
df_error = self.all_df_errors[t][i]
index = df_error.index.values
examples_to_keep = [example for example in index if additive in example]
df_error_blend = df_error.loc[examples_to_keep]
self.blends_parity_plot(df_error_blend,
model_path,
additive
)
for i in range(len(self.models)):
self.box_performances_sns(i, by="Transform")
self.box_performances_sns(i,
by="Transform",
plot_type="bar")
self.bar_CV_test(i,
by="Transform")
# turn on for violin plots as well
# self.box_performances_sns(i,
# by="Transform",
# plot_type="violinsplit")
#