-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
359 lines (278 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import joblib
import yaml
from datetime import datetime
import os
import shutil
import seaborn as sns
# from tpot import TPOTRegressor
import pickle
from pickle import dump
from scipy.signal import find_peaks
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import PolynomialFeatures
from sklearn.decomposition import PCA
from sklearn.impute import SimpleImputer
from sklearn import tree
from sklearn.tree import plot_tree
from sklearn.tree import DecisionTreeRegressor
from dtreeviz.trees import dtreeviz
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.kernel_ridge import KernelRidge
from sklearn.cross_decomposition import PLSRegression
from sklearn.neural_network import MLPRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.dummy import DummyRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import LassoCV
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import Ridge
from mpl_toolkits.mplot3d import Axes3D
import collections
import multiprocessing
from multiprocessing import Pool
class Train:
def tune_model(self, model, X_train_):
# print(model)
if model in ["Lasso"]:
parameters_ = [self.parameters["Lasso"]]
best_model = GridSearchCV(Lasso(), parameters_, cv=self.kf, scoring = self.scoring) # test that indices match
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
elif model in ["MLPRegressor"]:
best_model = MLPRegressor(random_state=1, max_iter=500)
# best_model.fit(X_train, y_train)
tuned_model = best_model.fit(X_train_, self.y_train)
cv_score = np.nan
#cv_score = best_model.best_score_
elif model in ["DecisionTree"]:
# parameters_ = [self.parameters["DecisionTree"]]
# best_model = GridSearchCV(DecisionTreeRegressor(), parameters_, cv=self.kf) # test that indices match
# best_model.fit(X_train_, self.y_train)
# tuned_model = best_model.best_model.best_estimator_
parameters_ = self.parameters["DecisionTree"]["parameters"]
n_iter_dc = self.parameters["DecisionTree"]["n_iter"]
for param in parameters_: # change lists to arrays in parameter grid
if type(parameters_[str(param)]) == list:
# change to array
try:
parameters_[str(param)] = np.asarray(parameters_[str(param)])
except:
pass
else:
pass
best_model = RandomizedSearchCV(estimator = DecisionTreeRegressor(),
param_distributions = parameters_,
n_iter = n_iter_dc,
cv = self.kf, scoring = self.scoring,
verbose=2,
random_state=self.seed,
n_jobs = -1,
refit=True)
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
elif model in ["KNN"]:
parameters_ = [self.parameters["KNN"]]
best_model = GridSearchCV(KNeighborsRegressor(), parameters_, cv=self.kf, scoring = self.scoring
) # test that indices match; scoring="accuracy"
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
elif model in ["ElasticNet"]:
parameters_ = [self.parameters["ElasticNet"]]
best_model = GridSearchCV(ElasticNet(), parameters_, cv=self.kf, scoring = self.scoring) # test that indices match
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
elif model in ["Ridge"]:
parameters_ = [self.parameters["Ridge"]]
best_model = GridSearchCV(Ridge(), parameters_, cv=self.kf, scoring = self.scoring) # test that indices match
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
elif model in ["RandomForest"]:
parameters_ = self.parameters["RandomForest"]["parameters"]
n_iter_rf = self.parameters["RandomForest"]["n_iter"]
for param in parameters_: # change lists to arrays in parameter grid
if type(parameters_[str(param)]) == list:
# change to array
try:
parameters_[str(param)] = np.asarray(parameters_[str(param)])
except:
pass
else:
pass
best_model = RandomizedSearchCV(estimator = RandomForestRegressor(),
param_distributions = parameters_,
n_iter = n_iter_rf,
cv = self.kf, scoring = self.scoring,
verbose=0,
random_state=self.seed,
n_jobs = -1,
refit=True)
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
# plot_tree(tuned_model.estimators_[0],
# feature_names=X_train_,
# class_names=wine.target_names,
# filled=True, impurity=True,
# rounded=True)
elif model in ["AdaBoost"]:
parameters_ = self.parameters["AdaBoost"]["parameters"]
n_iter_ab = self.parameters["AdaBoost"]["n_iter"]
for param in parameters_: # change lists to arrays in parameter grid
if type(parameters_[str(param)]) == list:
# change to array
try:
parameters_[str(param)] = np.asarray(parameters_[str(param)])
except:
pass
else:
pass
best_model = RandomizedSearchCV(estimator = AdaBoostRegressor(),
param_distributions = parameters_,
n_iter = n_iter_ab,
cv = self.kf, scoring = self.scoring,
verbose=0,
random_state=self.seed,
n_jobs = -1,
refit=True)
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
elif model in ["PLS"]:
parameters_ = [self.parameters["PLS"]]
best_model = GridSearchCV(PLSRegression(), parameters_, cv=self.kf, scoring = self.scoring) # test that indices match
best_model.fit(X_train_, self.y_train)
tuned_model = best_model.best_estimator_
cv_score = best_model.best_score_
elif model in ["LinearRegression"]:
tuned_model = LinearRegression()
tuned_model.fit(X_train_, self.y_train)
cv_scores = cross_val_score(tuned_model, X_train_, self.y_train,
cv=self.kf,
scoring = self.scoring
)
print(cv_scores)
cv_score = np.mean(cv_scores)
# elif model in ["TPOT", "tpot"]:
# tuned_model = TPOTRegressor(generations=self.parameters["TPOT"]["generations"],
# population_size=self.parameters["TPOT"]["population_size"],
# verbosity=self.parameters["TPOT"]["verbosity"],
# random_state=self.seed,
# max_time_mins = self.parameters["TPOT"]["max_time_mins"],
# n_jobs=self.parameters["TPOT"]["n_jobs"])
# # tuned_model.fit(X_train_, self.y_train)
# # tuned_model.export(f'{model_path}/{model}_pipeline.py')
# cv_score = np.nan
elif model in ["Baseline_Average"]:
tuned_model = DummyRegressor(strategy="mean")
cv_scores = cross_val_score(tuned_model, X_train_, self.y_train,
cv=self.kf,
scoring = self.scoring
)
cv_score = np.mean(cv_scores)
elif type(model) == dict: # expand to compare multiple trained models
cv_score = np.nan
# try:
# add file extension flexibility
try:
tuned_model = joblib.load(model["pretrained"]["filename"])
except:
tuned_model = pickle.load(open(model["pretrained"]["filename"]), "rb")
# print(model["pretrained"]["filename"])
# tuned_model = pickle.load(open(model["pretrained"]["filename"], 'rb'))
# except:
# # exchange with other simple model and replace in list?
# pass
else:
model_error = f'{model} model not supported'
self.output_comments.append(model_error)
raise NameError(model_error)
tuned_model = None
# print(model)
return tuned_model, cv_score
def tune_train_all_models(self):
self.all_tuned_models = np.zeros((len(self.feature_transformations), len(self.models)), dtype=object)
self.all_test_predictions = np.zeros((len(self.feature_transformations), len(self.models), len(self.y_test)))
self.all_train_predictions = np.zeros((len(self.feature_transformations), len(self.models), len(self.y_train)))
self.all_cv_scores = np.zeros((len(self.feature_transformations), len(self.models)), dtype=object)
for t in range(len(self.feature_transformations)):
X_train_ = self.X_trains_transformed[t]
X_test_ = self.X_tests_transformed[t]
for i, model in enumerate(self.models):
model_path = self.model_paths[t][i]
tuned_model, cv_score = self.tune_model(model, X_train_)
# if model == "RandomForest":
# for idx, estimator in enumerate(tuned_model.estimators_):
# plt.figure(figsize=(15, 10))
# plot_tree(estimator,
# feature_names=self.df_trains_transformed[t].columns,
# class_names=self.y_train,
# filled=True, impurity=True,
# rounded=True)
# plt.savefig(f"{model_path}/RF_estimator{idx}.png")
# viz = dtreeviz(estimator.estimators_[idx],
# self.X_trains_transformed[t],
# self.y_train,
# feature_names=self.df_trains_transformed[t].columns,
# title=f"{idx} decision tree")
# elif model == "AdaBoost":
# for idx, estimator in enumerate(tuned_model.estimators_):
# plt.figure(figsize=(15, 10))
# plot_tree(estimator,
# feature_names=self.df_trains_transformed[t].columns,
# class_names=self.y_train,
# filled=True, impurity=True,
# rounded=True)
# plt.savefig(f"{model_path}/AB_estimator{idx}_weight{tuned_model.estimator_weights_[idx]: .2f}.png")
# save model object written into text to see hyperparameters
with open(f"{model_path}/model_object_parameters.txt", "w") as f:
f.write(f"{tuned_model}")
if type(model) != dict:
try:
tuned_model.fit(X_train_, self.y_train)
test_predictions_i = tuned_model.predict(X_test_)
train_predictions_i = tuned_model.predict(X_train_)
if model in ["TPOT", "tpot"]:
tuned_model.export(f'{model_path}/{model}_pipeline.py')
else:
# save the model
dump(tuned_model, open(f'{model_path}/tuned_trained_model.pkl', 'wb'))
except:
model_error = f"Could not tune and train {model} model"
self.output_comments.append(model_error)
raise ValueError(model_error)
pass # add placeholder for undefined model in list ?
else: # pretrained models loaded in
# print(tuned_model)
test_predictions_i = tuned_model.predict(X_test_)
train_predictions_i = tuned_model.predict(X_train_)
self.all_tuned_models[t][i] = tuned_model
self.all_cv_scores[t][i] = cv_score
self.all_test_predictions[t][i] = test_predictions_i
self.all_train_predictions[t][i] = train_predictions_i
# save the respective feature transform scaler
if type(self.scaler_objects[t]) != str:
dump(self.scaler_objects[t], open(f'{model_path}/scaler.pkl', 'wb'))
# except:
# print("No scaler") # find way to save homemade scalers
# erase tuned model just in case
tuned_model = None
train_predictions_i , test_predictions_i = None, None