-
Notifications
You must be signed in to change notification settings - Fork 0
/
csqrt_test.c
369 lines (311 loc) · 9.13 KB
/
csqrt_test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
/* $OpenBSD$ */
/*-
* Copyright (c) 2007 David Schultz <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "macros.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <complex.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include "test-utils.h"
/*
* This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
* The latter two convert to float or double, respectively, and test csqrtf()
* and csqrt() with the same arguments.
*/
static long double complex (*t_csqrt)(long double complex);
static long double complex
_csqrtf(long double complex d)
{
return (csqrtf((float complex)d));
}
static long double complex
_csqrt(long double complex d)
{
return (csqrt((double complex)d));
}
#pragma STDC CX_LIMITED_RANGE OFF
/*
* Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
* Fail an assertion if they differ.
*/
#define assert_equal(d1, d2) CHECK_CFPEQUAL_CS(d1, d2, CS_BOTH)
/*
* Test csqrt for some finite arguments where the answer is exact.
* (We do not test if it produces correctly rounded answers when the
* result is inexact, nor do we check whether it throws spurious
* exceptions.)
*/
static void
test_finite(void)
{
static const double tests[] = {
/* csqrt(a + bI) = x + yI */
/* a b x y */
0, 8, 2, 2,
0, -8, 2, -2,
4, 0, 2, 0,
-4, 0, 0, 2,
3, 4, 2, 1,
3, -4, 2, -1,
-3, 4, 1, 2,
-3, -4, 1, -2,
5, 12, 3, 2,
7, 24, 4, 3,
9, 40, 5, 4,
11, 60, 6, 5,
13, 84, 7, 6,
33, 56, 7, 4,
39, 80, 8, 5,
65, 72, 9, 4,
987, 9916, 74, 67,
5289, 6640, 83, 40,
460766389075.0, 16762287900.0, 678910, 12345
};
/*
* We also test some multiples of the above arguments. This
* array defines which multiples we use. Note that these have
* to be small enough to not cause overflow for float precision
* with all of the constants in the above table.
*/
static const double mults[] = {
1,
2,
3,
13,
16,
0x1.p30,
0x1.p-30,
};
double a, b;
double x, y;
unsigned i, j;
for (i = 0; i < nitems(tests); i += 4) {
for (j = 0; j < nitems(mults); j++) {
a = tests[i] * mults[j] * mults[j];
b = tests[i + 1] * mults[j] * mults[j];
x = tests[i + 2] * mults[j];
y = tests[i + 3] * mults[j];
ATF_CHECK(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
}
}
}
/*
* Test the handling of +/- 0.
*/
static void
test_zeros(void)
{
assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
}
/*
* Test the handling of infinities when the other argument is not NaN.
*/
static void
test_infinities(void)
{
static const double vals[] = {
0.0,
-0.0,
42.0,
-42.0,
INFINITY,
-INFINITY,
};
unsigned i;
for (i = 0; i < nitems(vals); i++) {
if (isfinite(vals[i])) {
assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
CMPLXL(0.0, copysignl(INFINITY, vals[i])));
assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
CMPLXL(INFINITY, copysignl(0.0, vals[i])));
}
assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
CMPLXL(INFINITY, INFINITY));
assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
CMPLXL(INFINITY, -INFINITY));
}
}
/*
* Test the handling of NaNs.
*/
static void
test_nans(void)
{
ATF_CHECK(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
ATF_CHECK(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
ATF_CHECK(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
ATF_CHECK(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
CMPLXL(INFINITY, INFINITY));
assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
CMPLXL(INFINITY, -INFINITY));
assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
}
/*
* Test whether csqrt(a + bi) works for inputs that are large enough to
* cause overflow in hypot(a, b) + a. Each of the tests is scaled up to
* near MAX_EXP.
*/
static void
test_overflow(int maxexp)
{
long double a, b;
long double complex result;
int exp, i;
ATF_CHECK(maxexp > 0 && maxexp % 2 == 0);
for (i = 0; i < 4; i++) {
exp = maxexp - 2 * i;
/* csqrt(115 + 252*I) == 14 + 9*I */
a = ldexpl(115 * 0x1p-8, exp);
b = ldexpl(252 * 0x1p-8, exp);
result = t_csqrt(CMPLXL(a, b));
ATF_CHECK_EQ(creall(result), ldexpl(14 * 0x1p-4, exp / 2));
ATF_CHECK_EQ(cimagl(result), ldexpl(9 * 0x1p-4, exp / 2));
/* csqrt(-11 + 60*I) = 5 + 6*I */
a = ldexpl(-11 * 0x1p-6, exp);
b = ldexpl(60 * 0x1p-6, exp);
result = t_csqrt(CMPLXL(a, b));
ATF_CHECK_EQ(creall(result), ldexpl(5 * 0x1p-3, exp / 2));
ATF_CHECK_EQ(cimagl(result), ldexpl(6 * 0x1p-3, exp / 2));
/* csqrt(225 + 0*I) == 15 + 0*I */
a = ldexpl(225 * 0x1p-8, exp);
b = 0;
result = t_csqrt(CMPLXL(a, b));
ATF_CHECK_EQ(creall(result), ldexpl(15 * 0x1p-4, exp / 2));
ATF_CHECK_EQ(cimagl(result), 0);
}
}
/*
* Test that precision is maintained for some large squares. Set all or
* some bits in the lower mantdig/2 bits, square the number, and try to
* recover the sqrt. Note:
* (x + xI)**2 = 2xxI
*/
static void
test_precision(int maxexp, int mantdig)
{
long double b, x;
long double complex result;
#if LDBL_MANT_DIG <= 64
typedef uint64_t ldbl_mant_type;
#elif LDBL_MANT_DIG <= 128
typedef __uint128_t ldbl_mant_type;
#else
#error "Unsupported long double format"
#endif
ldbl_mant_type mantbits, sq_mantbits;
int exp, i;
ATF_REQUIRE(maxexp > 0 && maxexp % 2 == 0);
ATF_REQUIRE(mantdig <= LDBL_MANT_DIG);
mantdig = rounddown(mantdig, 2);
for (exp = 0; exp <= maxexp; exp += 2) {
mantbits = ((ldbl_mant_type)1 << (mantdig / 2)) - 1;
for (i = 0; i < 100 &&
mantbits > ((ldbl_mant_type)1 << (mantdig / 2 - 1));
i++, mantbits--) {
sq_mantbits = mantbits * mantbits;
/*
* sq_mantibts is a mantdig-bit number. Divide by
* 2**mantdig to normalize it to [0.5, 1), where,
* note, the binary power will be -1. Raise it by
* 2**exp for the test. exp is even. Lower it by
* one to reach a final binary power which is also
* even. The result should be exactly
* representable, given that mantdig is less than or
* equal to the available precision.
*/
b = ldexpl((long double)sq_mantbits,
exp - 1 - mantdig);
x = ldexpl(mantbits, (exp - 2 - mantdig) / 2);
CHECK_FPEQUAL(b, x * x * 2);
result = t_csqrt(CMPLXL(0, b));
CHECK_FPEQUAL(x, creall(result));
CHECK_FPEQUAL(x, cimagl(result));
}
}
}
ATF_TC_WITHOUT_HEAD(csqrt);
ATF_TC_BODY(csqrt, tc)
{
/* Test csqrt() */
t_csqrt = _csqrt;
test_finite();
test_zeros();
test_infinities();
test_nans();
test_overflow(DBL_MAX_EXP);
test_precision(DBL_MAX_EXP, DBL_MANT_DIG);
}
ATF_TC_WITHOUT_HEAD(csqrtf);
ATF_TC_BODY(csqrtf, tc)
{
/* Now test csqrtf() */
t_csqrt = _csqrtf;
test_finite();
test_zeros();
test_infinities();
test_nans();
test_overflow(FLT_MAX_EXP);
test_precision(FLT_MAX_EXP, FLT_MANT_DIG);
}
ATF_TC_WITHOUT_HEAD(csqrtl);
ATF_TC_BODY(csqrtl, tc)
{
/* Now test csqrtl() */
t_csqrt = csqrtl;
test_finite();
test_zeros();
test_infinities();
test_nans();
test_overflow(LDBL_MAX_EXP);
/* i386 is configured to use 53-bit rounding precision for long double. */
#ifndef __i386__
test_precision(LDBL_MAX_EXP, LDBL_MANT_DIG);
#else
test_precision(LDBL_MAX_EXP, DBL_MANT_DIG);
#endif
}
ATF_TP_ADD_TCS(tp)
{
ATF_TP_ADD_TC(tp, csqrt);
ATF_TP_ADD_TC(tp, csqrtf);
ATF_TP_ADD_TC(tp, csqrtl);
return (atf_no_error());
}