

CONSTRUCTIVE MATHEMATICS AND COMPUTER PROGRAMMING

Per Martin-L&f

University of Stockholm, Stockholm, Sweden

P Bper read at the

6-th International Congress for Logic, Method-

&ad Philesophy of Science, Hannover, 22 - 29 August 1979,

During the period of a bit more than thirty years that has
elapsed since the first electronic computers were built, program-
ming languages have developed from various machine codes and
assembly languages, now referred to as low level languages, to
high level languages, like FORTRAN, ALGOL 60 and 68, LISP and
PASCAL. The virtue of a machine code is that a program written
in it can be directly read and executed by the machine, Its weak-
ness is that the structure of the code reflects the structure of
the machine so closely as to make it unusable for the instruction
of any other machine and, what is more serious, very difficult
to understand for a human reader, and therefore error prone.

With a high level language, it is the other way round. Its weak-
ness is that a program written in it has to be compiled, that is,
translated into the code of a particular machine, before it can
be executed by it. But one is amply compensated for this by hav-
ing a language in which the thought of the programmer can be
expressed without too much distortion and understood by someone
who knows next to nothing about the structure of the hardware,
but dees know some English and mathematies. The distinction
between low and high level programming languages is of course
relative to available hardware. It may well be possible to turn
what is now regarded as a high level programming language inteo
machine code by the invention of new hardware.

Parallel to the development from low to high level program-
ming languages, there has been a change in one’s understanding of
the programming activity itself. It used to be looked (down) upon

28 the rather messy job of instructing this or that physically

existing machine, by cunning tricks, to perform computational

tasks widely surpassing our own physical powers, something that
might appeal to people with a liking for crossword puzzles or
chess problems. But it has grown into the discipline of design-
ing programs for various (numerical as well as nonnumerical)
computational tasks, programs that have to be written in a for-
mally preecise notation so as to admit of automatic execution.
Whether or not machines have been built or compilers have been
written by means of which they can be physically implemented is
of no importance as leng as questions of effioiency are ignored.
What matters is merely that it has been laid down precisely how
the programs are to be executed or, what amounts to the same,
that it has been specified how a machine for the exeeution of the
programs would have to function. This change of programming,
which Dijkstra (A Discipline of Programming, Premntice-Hall,
Englewood Cliffs, N. J., 1976, p. 201) has suggested to fix ter-
minologically by switching from computer science to computing
science, would not have been possible without the creation of
high level languages of a sufficiently clean logical structure.
It has made programming an activity akin in rigour and beauty
to that of preving mathematical theorems. (This analegy is fg:
sctually exact in a sense which will become clear bhelow.) iu
While maturing into a science, programming has developed
a2 coneeptual machinery of its own in which, besides the notion
of program itself, the notions ﬁf data structure and data type
socupy central positions. Even in FORTRAN, there were two types
»f variables, namely integer and floating point variables,

the type of a variable being determined by its initial letter.

Ia ALGOL 60, there was added to the two types integer and real

I
P {r\"-‘
¢ &R) 3 g
) LV
?)lfj'ﬁ ,},(«"F) 3.
A 2

7 I

the third type Boolean, and the association of the types with the
variables was made both more practical and logical by means of
type declarations. However, it was only through Hoare’s Notes on
pata Structuring (0.-J. Dahl, E. W. Dijkstra and C. A. R. Hoare,
Struetured Programming, Academic Press, London, 1972, pp. 83-174)
that the notion of type was introduced into programming in a sys-
tematic way. In addition to the three types of ALGOL 60, there now
appeared types defined by enumeration, Cartesian products, dis-
criminated uniens, array types, power types and various recursively
defined types. All these new forms of data types were subsequently
incorporated into the programming language PASCAL by Wirth (The
programming language Pascal, Aeta Informatica, Vol. 1, 1971,

pp. 35-63). The left coelumn of the following table, which shews
some of the key motions of programming and their mathematical

eounterparts, uses notation from ALGOL 60 and PASCAL.

Programming

Mathematics

program, procedure, algorithm
input

output, result

if B then S1 else 82

while B do S

data structure

function

argument

value

composition of functions

definition by cases

definition by recursion

element, object

data type

value of a data type

a : A

~ integer

real

Boolean

20 s 8

array (?] of T

record 8, Tl; 8y: T2 end

record case s : (01, ¢,) of

°,: (31: Ti)‘ 0y (32: T2) end

set of T

set, type

element of a set, object of

a type

acaA

{0, 13
{°1’ ceoy on}

b e B ol

{o, 1}7, 7> {o, 1}

As can be seen from this table, or from recent programming

texts with their little snippets of set theory prefaced to the

corresponding programming language constructions, the whole con-

eeptual apparatus of programming mirrors that of modern mathe-

saties (set theory, that is, not geometry) amd yet is supposed

%o be different from it, How come? The reason for this curious .

#ituation is, I think, that the mathematical notions have grad- X

sally received an interpretation, the interpretation which we

rafer to as classiocal, which makes them unusable for programming.

Partunately, I do not need to enter the philosophical debate as to

"asther the classical interpretation of the primitive logical

&

and mathematical notions (proposition, truth, set, element, funec-
tion ete.) is sufficiently clear, because this much is at least
clear, that if a function is defined as a binary relation satis-
fying the usual existence and unicity conditions, whereby clas-
sical reasoning is allowed in the existence proof, or a set of
ordered pairs satisfying the corresponding conditions, then a
funetion cannot be the same kind of thing as a computer program.
Similarly, if a set is understood in Zermelo’s way as a member
of the cumulative hierarchy, then a set cannot be the same kind
of thing as a data type.

Now, it is the contention of the intuitionists (or con-
structivists, I shall use these terms synonymously) that the
basic mathematical notions, above all the notion of function,
ought to be interpreted in such a way that the cleavage between
mathematics, classical mathematics, that is, and programming
that we are witnessing at present disappears., In the case of the
mathematical notions of function and set, it is not so much a
question of providing them with new meanings as of restoring old
ones, whereas the logical notions of proposition, proof, truth
etec. are given genuinely new interpretations. It was Brouwer
who realized the necessity of so doing: the true source of the
uncomputable functions of classical mathematics is not the axiom
of choice (which is valid intuitionistically) but the law of
excluded middle and the law of indirect proof. Had it not been
possible to interpret the logical notions in such a way as te
validate the axiom of choice, the prospects of constructive
mathematics would have been dismal,.

The difference, then, between constructive mathematics and

programming does not concern the primitive notions of the one or

the other, because they are essentially the same, but lies in the
programmer’s insistence that his progzrams be writtem in a formal
notation so that they can be read and executed by a machine,
whereas, in constructive mathematics as practised by Bishop
(Poundations of Comstructive Analysis, McGraw-Hill, New York,
1967), for example, the computational procedures (programs) are
sersally left impliecit in the proofs, so that considerable fur-
Shar wark 15 needed to bring them into a form which makes them
15 fer sechanical execution.
- ~ § Savs Just said about the close connection between con-
S ihematics and programming explains why the intuition-
{4s istsitionistic theory of types: predicative
: "33, Bfited by E. B. Rose and J. C. Shep-
. Assterdas, 1975, pp. 73-118), which I began

o - 3- e phllosephical metive of clarifying the
mﬁ?“ of Istsitionistic mathematics, may equally
=il e viewet s & programming lamguage. But for a few concluding
SEanrRe, e rest of my talk will be devoted to a fairly complete,
Si%et s sendensed, description of this language, emphasizing its

"harsster of programming language. As such, it resembles ALGOL 68
SE PASCAL Inm its typing facilities, whereas the way the programs
Ars sritten and executed makes it more reminiscent of LISP.

! The sxpressions of the theory of types are formed out of
*ariables

‘ Xy, Vy Zy ...

% means of various forms of expression

(Fxl,...,xn)(al,...,a-).

In an expression of such a form, not all of the variables
iy ooey X need bhecome bound in all of the parts By coey 8.
Thus, for each form of expression, it must be laid down what

variables become bound in what parts. For example,

b

Sf dx

a
i% & form of expression (Ix)(a,b,f) withm = 3 and n = 1 which
2iads 2ll free occurrences of the single variable x in the third

pars £ Aad
T

=
e e
3 iPz)ia.f) with = = 2 and n = 1 which binds
' S warisble x in the second part f,
d—— ¥
i whatever notation, canonical
_ Pally svaluated, which is the same as

%% wlss. Thas, in decimal arithmetic,

.‘.'._. e, 10, 11, ...

- b, axpressions, whereas

10
22, 2-2, 22, 31, 1010, ...

» 1
% sai. As ardiirarily formed expression need net have a value,
We%. If s» sxpression has a value, then that value is necessarily
Msaaniesl . This may be expressed by saying that evaluation is
S8sspetent. When you evaluate the value of an expression, you get

st wvalue back.
Ia the theory of types, it depends only on the outermost

form of an expression whether it is canonical or not. Thus there
are certain forms of expression, which I shall call canonical
forms, such that an expression of one of those forms has itself
as value, and there are other, noncanonical forms for which it
is laid down in seme other waychow an expression of such a form
is evaluated. What I call canonical and noncanonical forms of
expression correspond to the constructors and selectors, respeo-
tively, of Landin (The mechanical evaluation of expressions,
Computer Journal, Vol. 6, 1964, pp. 308-320). In the context of
programming, they might also\gptly be called data and program
forms, respectively. The tablpﬁ%elow displays the primitive forms
of expression used in the theory of types, the canonical ones to
the left and the noncanonical ones to the right. New primitive

forms of expression may of course be aéhyd when there is need

of them. g
o

Canonical Noncanonical
(TTx € A)B, (Ax)b ; c(a)
(Zx€A)B, (a,b) (Ex,y)(o,d)
A+B, i(a), j(v) (Dx,y)(ec,d,e)
I{A,a,b), r J(e,d)
L Ro(c)
... 0 R,(c,e,)
B 0, 1, | Ry(e,0,,6,)

N, 0, a' (Rx,y)(c,d,e)

(Wx€A)B, sup(a,b) (Tx,¥,2)(e,d)

Uo, Ui, LR 8

The conventions as to what variables become bound in what
parts are as follows. Free occurrences of x in B become bound in
(TTx € A)B, (Zx € A)B and (Wx € A)B. Free occurrences of x in b
become bound in (Ax)b. Free occurrences of x and y in d become
bound in (Ex,y)(c,d). Free occurrences of x in d and y in e
become bound in (Dx,y)(c,d,e). Free occurrences of x and y in e
become bound in (Rx,y)(ec,d,e). And, finally, free occurrences
of x, y and z in d become bound in (Tx,y,z)(c,&).

Expressions of the various forms displayed in the table are

svaluated according teo the following rules. I use

b(al,...,an/xi,...,xn)

o denote the result of simultaneously substituting the expres- |
slions '1’ ceey B for the variables Xiy ooy X in the expres-
sion b. Substitution is the process whereby a program is supplied
with its input data, which need not necessarily be in evaluated
form.

An expression of canonical form has itself as value., This
Sas already been intimated.

To execute c(a), first execute c. If you get (A x)b as

swsult, then continue by executing b(a/x). Thus c(a) has value d

4f ¢ has value (A x)b and b(a/x) has value d.

o execute (Ex,y)(o,d), first execute ¢. If you get (a,b)

as result, then continue by executing d(a,b/x,y). Thus (Ex,y)(c,d)
has value e if ¢ has value (a,b) and d(a,b/x,y) has value e.

To exeoute (Dx,y)(c,d,e), first execute c. If you get i(a)
as result, then continue by executing d(a/x). If, on the other
hand, you get j(b) as result of executing ¢, then continue by
executing e(b/y) instead. Thus (Dx,y)(c,d,e) has value f if
either ¢ has value i(a) and d(a/x) has value f,or ¢ has value
j(b) and e(b/y) has value f.

Te eiecnte J(e,d), first ?xecute ¢. If you get r as result,
then continue by executing d. Thus J(e,d) has value e if ¢ has
value r and d has value e.

To execute Rn(°’°0""’°n-1)’ first execute c.~ If you get m
as result for somem = 0, ..., n-1, then continue by execuf§ing .-
Thus Rn(°’°0""’°n-1) has value d if ¢ has value cy 8nd c -~ has

value d for some m = 0, ..., n-1. In particular, no(c) has no

value. It corresponds to the statement »
abort

intreduced by Dijkstra (A Discipline of Programming, p. 26). The
pair of forms 0, and R1(°’°0) together operate in exactly the

same way as the pair of forms r and J(c,d). To have them both in
the language constitutes a redundancy. R2(°’°0’°1) corresponds to

the usual conditional statement

if B then S, else S2

i

and Rn(°’°0’°“’°n-1) for arbitrary n = 0, 1, ... to the state-

ment

with e do {e,: S, ..., oy: 8 |

introduced by Hoare (Notes on Data Structuring, p. 113) and real-

ized by Wirth in PASCAL as the case statement
case e of e, Sl; ceed Cpt Sn end .,

To execute (Rx,y)(c,d,e), first execute c¢. If you get O as
result, then continue by executing d. If, om the other hand, you
~get a' as result, then continue by exeecuting e(a,(Rx,y)(a,d,e)/x,y)
instead. Thus (Rx,y)(c,d,e) has value f if either ¢ has value O
/ and d has value f, or ¢ has value a' and e(a,(Rx,y)(a,d,e)/x,y)

has value f. The closest analogue of the recursion form
(Rx,y)(ec,d,e) in traditional programming languages is the re-

petitive statement form
F while B do S.

Te execute (Tx,y,z)(e,d), tirst execute c. If you get
sup(a,b) as result, then continue by executing d(a,b,(Xv)
(rx,y,z)(b(v),d)/x,y,z). Thus ('’x,y,z)(c,d) has value e if ¢ has
value sup(a,b) and d(a,b,(Av)(Tx,y,z)(b(v),d)/x,y,z) has value e.
The transfinite recursion form (Tx,y,z)(ec,d) has not yet found
any applicatioms in programming. It has, as far as I know, no
counterpart in other programming languages.

The traditional way of evaluating an arithmetical expression
is to evaluate the parts of the expression before the expression

itself is evaluated, as shown in the following example.

(3 + 2)! - &

5
S————

120
———’

480

12,

Thus, traditionally, expressions are evaluated from within, which
in programming has come to be known as the applicative order of
evaluation. When expressions are evaluated in this way, it is

obvious that an expression cannot have a value unless all its

parts have values. Moreover, as was explicitly stated as a prin- t{g,
- ciple by Frege, the value (Ger. Bedeutung) of an expression w“%ﬁb
e
depends only on the values of its parts. In other words, if a ﬂﬁ"ﬂ'

part of an expression is replaced by one which has the same value,

the value of the whole expression is left unaffected.

When variable binding forms of expression are introduced,
as they are in the theory of types, it is no longer possible,
in general, to evaluate the expressions from within. To evaluate ﬁ
()\x)b, for example, we would first have to evaluate b. But b can- &
not be evaluated, in general, until a value has been assigned to
the variable x. In the theory of types, this difficulty has been
overcome by reversing the order of evaluation: instead of eval-
uating the expressions from within, they are evaluated from with-
out, This is known as head reduction in combinatory logic and
normal order or lazy evaluation in programming. For example,

(A_x)b is simply essigned itself as value., The term lazy is
appropriate since only as few computation steps are performed as
are absolutely necessary to bring an expression into canonical
form. However, what turns out to be of no significance, it is no
longer the case that an expression cannot have a value unless all
its parts have values. For example, a' has itself as value even
if a has no value. What is significant, though, is that the prin-

¢iple of Frege’s referred to above, namely that the value of an

sxpression depends only on the values of its parts, is irretriev-

13.

ably lost., To make the language work in spite of this loss has
been one of the most serious difficulties in the design of the

theory of types.

So far, I have merely displayed the various forms of expres-
sion used in the theory of types and explained how expressions
composed out of those forms are evaluated. The inferential or,
as one says in combinatory logic, illative part of the language

consists of rules for making judgments of the four forms
A is a type,
:§ A and B are equal types,
a is an object of type A,
a and b are equal objects of type A,
abbreviated ip,
A type,
! A = B,
acaA,

a=>bE€A,

respectively. A judgment of any ene of these forms is in general
Aypothetical, that is, made under assumptions er, to use the
terminology of AUTOMATH (N. G. de Bruijn, The mathematical lan-
guage AUTOMATH, its usage, and some of its extensions, Symposium

#2 Automatic Demonstration, Lecture Notes in Mathematics, Vol. 125,

Springer-Verlag, Berlin, 1970, op. 29-61), in a context

14,

xleAi’ oy xneAn.

In such a context, it is always the case that A1 is a type, ...,

% is & type under the preceding assumptions x, € Ai’ ool
5_‘ ‘L'_‘. When there is need to indicate explicitly the as-

. ®sptisms of & hypothetical judgment, it will be written
.
A trpe (x €A, ..., X EA4),

“‘o “eny 56 An)v
wen XLEA),
€a,).

% of the theory of

smly the readings

Swaliag which is most natural when the
% preogramming language,

A I» & problem (task).

.~ s Iaird form of judgment may be read not only

& 5% a= object of type (element of the set) A,

% Is & proof of the proposition A,

15,

a is a program for the problem (task) A.

The equivalence of the first two readings is the by now wellknown
correspondence between propositions and types discovered by
Curry (Combinatory Logic, Vol. I, North-Holland, Amsterdam, 1958,
pp. 312-315) and Howard (The formulae-as-types notion of construc-
tion, 1969), whereas the transition from the second to the third
is Kolmogorov’s interpretation (Zur Deutung der intuitionistischen
Logik, Mathematische Zeitschrift, Vol. 35, 1932, pp. 58-65) of
propositions as problems or tasks (Ger. Aufgabe).

The four forms of judgment used in the theory of types
should be compared with the three forms of judgment used (al-
though usually not so called) in standard presentations of first
order predicate calculus, whether classical or intuitionistie,

namely
A is a formula,
A is true,
a is an individual term.

The first of these corresponds to the form A is a type (proposi-
tion), the second is obtained from the form a is an object of
type (a proof of the proposition) A by suppressing a, and the
third is again obtained from the form a is an object of type A,
this time by choosing for A the type of individuals.

In explaining what a judgment of one of the above four forms
means, I shall first limit myself to assumption free judgments.

fnce it has been explained what meanings they carry, the explana-

16.

tions can readily be extended so as to cover hypothetical judg-
ments as well.

A canonical type A is defined by prescribing how a canonical ol

g

object of type A is formed as well as how two equal canonical ob-
jects of type A are formed. There is no limitation on this pre-
scription except that the relation of equality which it defines

between canonical objects of type A must be reflexive, symmetric

and transitive. If the rules for forming canonical objeocts as J
well as equal canonical objects of a certain type are called the
introduction rules for that type, we may thus say with Gentzen
(Untersuchungen iiber das logische Schliessgn, Mathematische Zeit-
schrift, Vol. 39, 1934, pp. 176-210, 405-431) that a canonical
type (proposition) is defined by its introduction ru#¥s. For non-

e

canonical A, a judgment of the form

A is a type

means that A has a canonical type as value,

Two canonical types A and B are equa}ﬁif a canonical objeot

of type A is also a canonical object of type B and, moreover,
equal canonical objects of type A are also equal canonical objects
of type B, and vice versa. For arbitrary (not necessarily canon-

ical) types A and B, a judgment of the form

A =B

means that A and BE have equal canonical types as values. This
finishes the explanations of what a type is and what it means for
two types to be equal.

Let A be a type. Remember that this means that A denotes a

i

canornical type, that is, has a canonical type as value. Then a
judgment of the form

A

/ acaA

means that a has a canonical object of the canonical type denoted
by A as value, Of course, this explghation is not comprehensible
unless we know that A has a canonical type as value as well as
what a canonical objeet of that type is. But we do know this
because of the presupposition that A is a type: it is part of
the definition of a canonical type how a canonical object of that
type is formed, and hence we cannot know a eanonical type without
knowing what a canonical object of that type is.

Let A be a type and a and_b objects of type A. Then a judg-

ment of the form
a=b€A

means that a and b have equal canonical objects of the canonical
type denoted by A as values. This explanation makes sense since
A was presupposed to be a type, that is, to have a canonical type
as value, and it is part of the definition of a canonical type
how equal canonical objects of that type are formed.

These meaning explanations are extended to hypothetical judg-
ments by an induction on the number of assumptions. Let it be
given as premises for all of the following four explanations that

xy € Al’ Saikin xnéAn is a context, that is, that A, is a type,

1
o b An is a type under the assumptions x, € A1’ ceey X g eAn-i'

By induction hypothesis, we know what this means.

A judgment of the form

Atnm(xléAi,.“,xneAn)

means that 3

A(al’ e ,an/xl, s ,xn) type

provided
ad 51A1'

s, € An(ai’""an-i/xi”"’xn-i)’

and,ﬁreover,
A(&i,...,an/xi,...,xn) = A(bi,..-,bn/xi,...,xn)
provided

»
.
e

a, =b, é.An(ai,...,an_1/x1,...,xn_1).

Thus it is in the nature of a family of types (propositional func-
tion) to be extensional in the sense just described.
Suppose that A and B are types under the assumptions

xIEAi, ¢ o0 9 xnéAno Then

A=B(x €A, ..., X €AY

means that

A(ll,...,an/xi,...,xn) = B(ai,...,an/xi,...,xn)

19-

provided
a, & Ai’
/%\.-
/
<
aneAn(ai’""an-i/xi""’xn-i)‘
From this definition, the extensionality of a family of types
and the evident transitivity of equality between types, it follows
as well that
A(ai,...,an/xi,.'.,xn) = B(bl,.'.,bn/xl,...’xn)
provided
0.1 = bi [Ai’
a =b € An(al’""an-i/xi""’xn-i)'
Let A be a type under the assumptions x, éIAl, ceey X “ An.
@ Then

a €A (xléAl, 184 xnéAn)
means that
a(ai,...,an/xi,...,xn) e&A(aI,...,an/xl,...,xn)

provided

a € An(ai’ AP ’an-i/xi’ = "xn-i)’

20.

and, moreover,

8(&1,..o,an/xi,...,xn) = B(bi,...,bn/xi,...,xn)

€ A(ai,.f.,an/xl,...,xn)

provided

a, = b1 E’Ai,

an = bn 6 An(al,uuo,an-l/xi,lbo,xn-l)o

Thus, just as in the case of a family of types, it is in the

nature of a function to be extensional in the sense of yielding

equal objeots of the range type when equal objects of the domain

types are substituted for the variables of which it is a function.
Let A be a type and a and b objects of type A under the

assumptions x, €A1’ cees X €An. Then
a=b¢€A (xiéAl’ Mges xneAn)
means that

a(ai....,an/xi,...,xn) = b(ai,...,an/xl,...,xn)

© A(al,...,an/xi,...,xn)

provided

21.

Again, from this definition, the extensionality of a function
and the transitivity of equality between objects of whatever type,

there follows the stronger property that

a(ai,...,an/xi,...,xn) = b(bi,...,bn/xl,...,xﬁ)

E‘A(ai,...,an/xi,...,xn)

provided

81 = bieAl’

a =b € An(ai, e "an-i/x1’ . ..,x“_i) .

This finishes my explanations of what judgments of the four forms
used im the theory of types mean in the presence of assumptions.
Now to the rules of inference or proof rules, as they are
called in programming. They will be presented in natural deduction
style, suppressing as usual all assumptions other than those that
are discharged by an inference of the particular form under con-
sideration. Moreover, in those rules whose conclusion has one of
the forms a € A and a = b € A, only those premises will be ex-
plicitly shown which have these very same forms, This is in
agreement with the practice of writing, say, the rules of dis-

junction introduction in predicate calculus simply

A true B true

AV B true A V¥V B true

without showing explicitly the premises that A and B are formulas,

For each of the rules of inference, the reader is asked to try

=

22.

te make the conclusion evident to himself on the presupposition
that he knows the premises, This does not mean that further
verbal explanations are of no help in bringing about an under-
standing of the rules, only that this is not the place for such
detailed explanations., But there are also certain limits to what
verbal explanations can do when it comes to justifying axioms
and rules of inferemnce. In the end, everybedy must understand

for himsel?f,

GENERAL RULES

Reflexivity
agaA A type |,
a=ac€aA A = A
Symmetry
a=bc¢€A A =B
b =a €A B =A
Transitivity
a=hE€EA P=0c €A A=2B B=2C
a=¢ €A A= C

Equality of types

a€EaA A =B a=be€A A =B

a &B a=Db€EB

)\.54 }O(.C/f\)&.b "‘\c oAl d .,‘_ A Tr—
el Ctym ncce C=D -
T ey

Substitution
- (x €A) (x € A)
a €A B type : a=c€A B=0D
B(a/x) type . B(a/x) = D(e/x)
(x € A) (x €A)
i a €A b &€B a=¢€A b=4d€&€8B
b(a/x) € B(a/x) b(a/x) = d(e¢/x) € B(a/x)
Assumption .
XA > xe 4 4 . fﬂ)f g{a/()

fLAOBr> JlyebPe) €4

Jler) ek
CARTESIAN PRODUCT OF A FAMILY OF TYPES
TV -formation
(x €A) (x €A)
A type B type A=2C B=D
(TTx € A)B type (TTx € A)B = (TTx € C)D
TT-introduetion ;
(x €A) (x € A)
b&B b=d &€B
(Ax)b € (TTx € A)B (Ax)b = (Ax)d € (TTx € A)B
Tl -elimination ,%we,,, ~NZ¢Z ftpﬁ:’w:ﬂwozg"
ce (TTxeA)B a€A s =ftc(ITxe€A)B a=4d€A
o(a) € B(a/x) ' c(a) = £(d) € B(a/x)
[

ce (Mxen)B

Ceb ole DOf6Ve]

24,
(E2 YAbal) = T py e A4
'l_\'-eqnalfty) [<F]é:DC i I W/Z"' ;

B (x € A)

a€EaA b €B e (TxeA)B

((Ax)b)(a) = b(a/x) € B(a/x) (hm)(o(x)) = o € (TTx €A)B

DISJOINT UNION OF A FAMILY OF TYPES

2. -formation

(x €4) ' (x €4)
A type B type A=2¢C B=D
(Zx €A)B type (Xx €A)B = (Zx €A)B
C D
2.-introduction
a €A b€ B(a/x) a=c€A b=4de&B(a/x)
(a,b) € (Zx €A)B (a,b) = (e,d) € (Zx € A)B

2. -elimination

(x €A, y€B)
cc (Zx€A)B d €c((x,y)/z)
(Ex,y)(e,d) € c(c/z2)

(x €A, y €B)
c=e€(ZxEA)B d=1t €cC((x,y)/z)

(Ex,y)(c,d) = (Ex,y)(e,t) € C(e/z)

2. ~equality

(x €A, y € B)
a €A b € B(a/x) 4 € ¢((x,y)/z)

(Ex,y)((a,b),d) = d(a,b/x,y) € C((a,b)/z)

25.

DISJOINT UNION OF TWO TYPES

+ =formation

A type B type A =¢C B =D

A + B type A+B=C+D

+ =introduetion

a€E€aAi a=¢¢g€A
i(a) €A + B i(a) = 1(¢) €A + B
be€B b=d €B
J(b) €A + B j(b) = j(d) €A + B

+ =-elimination

(x €A) (y €B)
e €A +B dec(i(x)/z) e e€c(j(y)/z)
(px,y)(c,d,e) € C(c/z)

(x €4) (y € B)
c=fE€A+B d=gec(i(x)/z) e=he€c(i(y)/z)

(Dx,y)(c,d,e) = (Dx,y)(f,g,h) € C(c/z)
8

+ -equality

(x €4A) (y € B)
a€A dec(i(x)/z) eec(ij(y)/=z)
(Dx9Y)(1(a)9d’e) d(a/x) € C(i(a)/z)

(x €4) (y € B)
beB dec(i(x)/z) e ec(i(y)/z)
(px,y)(J(v),d,e) = e(b/y) € c(j(b)/z)

26.

IDENTITY RELATION

T -formation

A type aEcA b €A

I1(A,a,b) type

A =2C

a==¢c€A b=d €A

I1(A,a,b) = 1(C,c,d)

I -introduction

a=b €A

a=b €A
r € 1(A,a,b)

r=r € I(A,a,b)
I -elimination

}' “,‘mg‘-"‘(j
e € 1(A,a,b) DO‘/’ a{
f‘(J a=be€EA
Wi
v\f_‘}}&ﬁ | ¢ €1(A,a,b) 4 €cC(r/z) c=ecI(A,a,b) d=7f €c(r/z)
\lf (é J(c,d) € C(e/z) J(e,d) = J(e,f) EC(c/z)
I -equality
\ a=bc¢€A 1 € ¢(r/z)
J(r,d) = a € c(r/z)
-/
FINITE TYPES
Nn-formation
N, type N =N,

Nn-introduotion

m €N, (m =0, ..., n-1) mo=m &N (m =0

isas Mxl)

27.

Nn-el imination

oEN, o €C(mn/z) (m =0, ..., n-1)

Rn(c,co,. "’°n-1) € C(e/z2)

c=dENn 0m=deC(mn/Z) (m = 0, PRI % &

Rn(c,co,...,cn_l) = Rn(d,do,...,dn_i) € C(e/z)

F Nn-equality

Cp éc(mn/z) iy i et)

(
Rn(mn’OO""’on-i) =0 € C(mn/z) :

=0, ..., N=-1)

NATURAL NUMBERS

N-formation

N is a type N=N

N-intreduction

0 €N 0=0€EN
aEN) a=>b¢EN
8'€N a':b'éN

N-elimination

(x €N, y €c(x/2))
ceN dec(o/z) e ec(x'/z)
(Rx’Y)(c,doe) GC(O/Z)

(x €N, y € ¢c(x/2))
ce=f&E€N d=g ccC(0/z) e=h € C(x'/z)
(Rxo}')(oodve) - (Rx9Y)(fsg9h) GC(O/Z)

e eeeeeee—eeeeee—

28.

N-equality

(x €N, y €C(x/2))
d €c(o/z) e €C(x'/z)
(Rx,y)(0,d,e) = d € C(0/z)

(x EN, y € C(x/2))
acN d €c(o/z) e € C(x'/z)

(Rx,y)(a',d,e) = e(a,(Rx,y)(a,d,e)/x,y) € C(a'/z)

WELLORDERINGS
W -fermation
(x €A) (x €A)
A type B type A=2C B=0D
(Wx € A)B type (WFx€A)B = (Wx €C)D
W -introduction
/

a€A bgcB(a/x)>(Wx €A)B
sup(a,b) € (Wx € A)3

a=c€A b=decB(a/x)>(Wx €A)B

sup(a,b) = sup(c,d) € (Wx €A)B
W -elimination

(x€A, yeEB>(Wx €A)B, z € (TTv € B)C(y(v)/w))
c €(Wx €A)B d € c(sup(x,y)/w)
(Tx,y,z)(cvd) EC(O/W)

29,

(xeA, yeB>(Wx€A)B, z € (TTv € B)C(y(v)/w))
d = £ &€ C(sup(x,y)/w)
(Tx,y,z)(evd) = (Tx,y,z)(ovf) € C(O/')

e=0ec(Wx €A)B

W -equality

(x€eA, yeB>(Wx €A)B, z€ (TIveB)C(y(v)/w))
d € C(sup(x,y)/w)
(Tx,y,z)(sup(a,b),d) = d(a,b,(Av)(Tx,y,z)(b(v),d)/x,y,2)

€ C(sup(a,b)/w)

acaA b € B(a/x)—>(Wx €A)B

UNIVERSES
Un-fomation
Un is a type Un = Un
Un-lntroduotion
(x €4) (x €A)
Aeun BEUn A::CEUn B=DéUn

(TTx € A)B € v, (TrxeA)B = (TTxe C)D € v,

(x €A)
BGUn

(x € A)
A=CEU, B=DEU,

{
A€EU,

(Zx €A)B €U,

(Tx€A)B = (Zx €C)D €V,

AGU‘ BSUu
A+B6Un
A€EU, a€A

b €A

I(A,a,b) € v,

A=C€Un

BaDéUn

A+B=C+D€Un

A-CGUn a=c¢cc€A

b=d€A

1(A,a,b) = I(C,e,d) € v,

' 30.
N, €U, N, =N, €U
N GEUn N =N E'Un
(x €4) (x €A)
A€U, BEU, A=CEU, B=DEU,

(Wxe€A)B €U,

(Wx €A)B = (WXGC)DEUn

, Uy €0, Uy = Uy €T,
Un-1 €Uy Un-t =Up4 €7,
Ua-elilination
A éUn A=BE€ Un
A type A =8B
A G'Un A =B €TUn
\AEUn+1 A'BGUIMI

An example will demonstrate how the language works., Let

the premises
A type,
B type (x € A),

C type (x €A, y €B)

be given, Make the abbreviation

3.
(Tix €A)B
___Y—_./
A—>B
provided the variable x does not occur free in B. Then
(MxeA)(ZyeB)c>(Zt € (TTx € A)B)(TTx € A)c(£(x)/y)

is a type which, when read as a propesition, expresses the axiom
of cheice. I shall construct an objeet of this type, an object
which may at the same time be interpreted as a proof of the axiom

of choice. Assume

X €A,

z € (TTx€ A)(Zy € B)c.
By [T-elimination,

z(x) € (Zy € B)cC.

Make the abbreviations

> (Ex,y)(e,x), (Ex,y)(e,y).
N————r N————
p(e) q(e)
By 2. -elimination,
p(z(x)) € B,
a(z(x)) € c(p(z(x))/y).
By [T -intreduction,

(Ax)p(z(x)) € (TTx € A)B,

and, by [1-equality,

32.

((Ax)p(z(x)))(x) = p(z(x)) € B.
By symmetry,

p(z(x)) = ((Ax)p(z(x)))(x) € B,
and, by substitution,

c(p(z(x))/y) = c(((Ax)p(2(x)))(x)/y).

By equality of types,

a(z(x)) € c(((Zx)p(z(x)))(x)/¥),
and, by TT7-introduction,

(Ax)q(z(x)) € (TTx € A)c(((X x)p(z(x)))(x)/y).

By if-introduction,

((Ax)p(z(x)),(Ax)q(z(x)))
€ (Zr€ (TlxeA)B)(TVx €A)C(L(x)/y).

Finally, by Ty -introduction,

(Nz)((O\ x)p(z(x)),(Ax)g(z(x)))
€ MxeA)(ZyeB)c>(Zr € (Tix €A)B)(TTx e A)c(r(x)/y).

Thus

(Nz)((Ax)p(z(x)),(Ax)q(2(x)))

is the sought for proof of the axiom of choice.

Toe conelude, relating constructive mathematics to computer

programming seems te me to have a beneficial influenee on both

27

parties., Among the benefits toc be derived by construective mathe-
matics from its association with computer progranming,hggg/is

. that you see immediately why you cannot rely upon the law of ex-
cluded middle: its uninhibited use would lead to programs which

<

you did not know how to execute. QEEEEEF is that you see the
point of introducing a formal notation not only for propositions, :
as in propositional and predicate logic, but also for their
proofs: this is necessary in order to make the methods of com-
putation implicit in intuitionistic (construetive) proofs fit for
automatic execution. And a third is that you see the point of

ool
formalizing the process of reasoning: this is necessary in order
to have the possibility of automatically verifying the programs’
correctness. In fact, if the AUTOMATH proof checker had been
written for the theory of types instead of the language AUTOMATH,
we would already have a language with the facility of automatic
checking of the correctness of the programs formed according to A

its rules,.

In the other direction, by choosing to program in a‘{prmal

e e S

language for constructive mathematics, like the theory of types,

&
& _—

one gets access to the whole conceptual apparatus of pﬁfe mathe-
;atics, neglecting those parts that depend criticallybon therlaw
;;’excluded middle, whereas even the best high level programming
languages so far designed are wholly inadequate as mathematical
languages (and, of course, nobody has claimed them to be so).

In fact, I do not think that_theksearch'gqr logically ever more

satisfactory high level programming languages can stop short of

anything but a language in which (cppatructive) mathematics can

be adequately expressed.

e ———

