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1. Introduction

Tait 1965 shows how the ordinals associated with the terms of Gôdel’s

theory of primitive recursive functionals of finite type can be found in
a perspicuous way by expanding them as infinite terms, the reason for
this being that, once the formation of infinite terms is allowed, primitive
recursion may be reduced to explicit definition. In this paper we propose
a simplified formulation of the infinite terms. Besides being simpler, this
formulation has the advantage of bringing out more fully the relation to
infinitary proof theory which is implicit in Tait’s paper. In fact, it turns
out that the main theorem, which says that an infinite term can always
be reduced to normal form, bears the same relation to the normal form
theorem for natural deductions found by Prawitz 1965 as does Tait’s
1968 cut elimination theorem for the classical infinitary propositional
logic to Gentzen’s Hauptsatz.

2. Infinité terms

We start with at least one atomic type. An atomic type is a type. If (1
and i are types, then

is a type, namely, the type of a function whose arguments are of type
and whose values are of type r. If 03C40, 03C41, ···, 03C4n, ··· is a countable
sequence of types, then

is a type, namely, the type of a function whose arguments are the natural
numbers and whose value for the argument n is of type 1:n. We use

03C41 ~ ··· ~ 03C4n-1 ~ 03C4n as an abbreviation of 03C41 ~ (··· ~ (03C4n-1 ~ 03C4n)···).
For each type we introduce as many variables

of that type as we please.
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A variable of type r is a term of type r. If x is a variable of type Q and

t(x) is a term of type r, then

is a term of type 03C3 ~ 03C4. If tn is a term of type 03C4n for n = 0,1,..., then

is a term of type ll7:n. If s and t are terms of type J and J - r, respectively,
then

is a term of type i. If t is a term of type Hr,, and n is a natural number,
then

is a term of type 03C4n. We use t1 t2 ··· tn as an abbreviation of

If x and y are variables of type To and 03A0(03C4n ~ 03C4n+1), respectively, then

is an example of a term of type ro - 03A0(03C4n ~ 03C4n+1) ~ 03A003C4n, which might
be called the recursion operator of that type.
The immediate subterms of a term are the terms from which it was

obtained by means of one of the four inductive clauses that generate the
terms. The subterms of a term are the subterms of its immediate subterms,
which are called proper subterms, and the term itself.
An occurrence of a variable x in a term is bound if it occurs in a subterm

of the form Àxt(x). Otherwise it is free. We do not distinguish between
terms which only differ in the naming of their bound variables. A term is
closed if it contains no free variables.
We can now state the two contraction rules. The first one is the rule of

03BBcontraction

Here t(s) denotes the result of substituting s for all free occurrences of x
in t(x). Before doing this, however, one has to see to it that no free

occurrence of a variable in s becomes bound in t(s). This is achieved by
renaming the troublemaking bound variables in t(x). The second con-
traction rule is the rule of projection

The relation s contr t is read s contracts into t.
A term is in normal form if it has no contractible subterms.
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We shall say that s reduces to t if, loosely speaking, t can be obtained
from s by repeated contractions of subterms. More precisely, the rela-
tion s reduces to t, abbreviated s red t, is defined inductively as follows.
If x is a variable, then x red x. If s contr t, then s red t. If s(x) red t(x),
then Âxs(x) red Àxt(x). If Sn red tn for n = 0, 1, ..., then (so, Sl, ... ) red
(t0, t1, ···). If r red s, then rt red st, and, if s red t, then rs red rt. If
s red t, then sn red tn. Finally, if r red s and s red t, then r red t.
We could equally well formulate our system of terms using combinators

instead of variables and 03BBabstraction. For every pair of types J and r
we would then have to introduce Schônfinkel’s combinator

and, for every triple of types p, J and i, his combinator

Moreover, for every type 03A003C4n and every n, we need a combinator

and, for every pair of types J and ll7:n, a combinator

Combinators and variables are combinator terms. If s and t are

combinator terms of type 6 and u -+ r, respectively, then ts is a combina-
tor term of type r. If tn is a combinator term of type in for n = 0, 1, ...,
then (t0, t1, ···, tn, ···) is a combinator term of type ntn.

There are four rules of contraction, one for each of the basic combina-
tors,

The isomorphism between combinator terms and 03BBterms is established
in the usual way, only we have a few more cases to consider. When passing
from combinator terms to 03BBterms, we replace Pn and Q by Àx(xn) and
03BBx03BBy(x0y, x1y, ···), respectively. Conversely, when defining Àabstrac-
tion by means of the combinators, we let Àx(to(x), t1(x), ···) b; the
combinator term Q(03BBxt0(x), 03BBxt1(x), ···), assuming that 03BBxtn(x) has
been defined already for n = 0, 1, ···.
Our main purpose is to show that every term reduces to normal form.

But, before doing this, we want to establish the relation between the
system of terms and a certain infinitary propositional logic.
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3. Relation to infinitary proof theory

We shall now reformulate the system of Âterms as a system of natural
deduction.

The, f ’ormulae are built up from at least one atomic formula by means of
the following two inductive clauses. If F and G are formulae, then

is a formula. If F0, F1, ···, Fn, ··· is a countable sequence of formulae,
then

is a formula. We use F1 ~ ··· ~ Fn-1 ~ Fn as an abbreviation of

F1 ~ (··· ~ (Fn-1 ~ Fn) ···).
We start a deduction by making some assumptions from which we draw

conclusions by repeatedly applying the following deduction rules.

~introduction

- elimination

modus ponens

A introduction

A elimination

Here the formula F in the - introduction rule has been enclosed within

square brackets in order to indicate that some occurrences of the formula

F as assumptions of the deduction of G have been discharged. This means
that the assumptions of the deduction of F - G are the assumptions of
the deduction of G minus the occurrences of F which are discharged at
the inference from G to F - G. When an assumption is discharged, it
must be indicated in some unambiguous way at what inference this

happens. For example, Gentzen 1934 marks the assumptions that are
discharged by a number and writes the same number at the inference by
which they are discharged.
A formula is provable if there is a deduction of it all of whose assump-

tions have been discharged.
If a logical sign is introduced only to be immediately eliminated, we

shall say that a cut occurs and call the formula whose outermost logical
sign is at the same time introduced and eliminated a cut formula.
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Suppose that a deduction contains a cut formula of the form F - G.
We can then simplify, the deduction in the following way, the original
deduction being pictured to the left and the simplified one to the right.

~reduction

Similarly, if the cut formula is of the form 039BFn, we have the following
method of simplification.

A reduction

We are now prepared to establish the isomorphism between the system
of terms and this system of natural deduction. The following dictionary
shows the relation.

atomic type atomic formula

type formula

variable assumption
bound variable discharged assumption
rule of term formation deduction rule

term deduction

03BBcontraction ~reduction

projection A reduction

normal term cut free deduction

Curry and Feys 1958 discovered the analogy between their so called
theory of functionality and the positive implicational calculus, and Ho-
ward 1969 extended it to Heyting arithmetic. I am indebted to William
Howard for pointing out this analogy to me.
The combinator formulation of the terms corresponds to having a

formal system of Hilbert type instead of a system of natural deduction.
There are four axioms,
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and just two rules of inference, namely, modus ponens and A introduc-
tion. The theorem which says that 03BBabstraction is definable by means of
the combinators corresponds to the deduction theorem for this system of
Hilbert type.

Because of the isomorphism we have established, it is merely a question
of terminology and notation whether we formulate our results for terms
or for deductions.

4. Ordinals associated with terms

The degree d(i) of a type r is inductively defined as follows. d(i) = 0
if r is atomic. d(03C3 ~ 03C4) = max (d(03C3)+ 1, d(03C4)). d(03A003C4n) = max d(03C4n).
Here max is used to denote the least upper bound of a set of ordinals so
that the degree of a type is an ordinal of the first or second number class.

It is convenient to carry over some of the terminology introduced for
deductions to terms. If a term has a convertible subterm, that is, a subterm
of the form 03BBxt(x)s or (to, t1, ···)n, then the type of Âxt(x) and
(t0, t1, ···), respectively, is said to be a cut type. The cut degree of a term
is the maximum of the degrees of all its cut types.
A cut type of t(s) is either a cut type of s, the type of s itself or a cut

type of t(x). Consequently, the cut degree of t(s) is at most equal to the
maximum of the cut degree of s, the degree of the type of s and the cut
degree of t(x).
The length let) of a term t is defined by the following inductive clauses.

l(x) = 0 if x is a variable. l(03BBxt(x)) = 1(t(x)) + 1. 1(ts) = max (I(s) + 1,
l(t)). l((t0, t1, ···)) = max l(tn). l(tn) = 1(t). The length of a term is
also an ordinal of the first or second number class. For example, the
length of the recursion operator 03BBx03BBy(x, y0x, y1 (y0x), ···) is 03C9+2.
By a straightforward induction on t(x) it is seen that

This property will be needed in the proof of the normal form theorem.
We shall not only prove that every term reduces to normal form but

also estimate the length of the normal term by means of the length and
cut degree of the given term. To this end we need the hierarchy of veblen
1908 based on the normal function 203B1 over the domain oc  Q. Thus, we

put ~0(03B1) = 203B1 and let Xp enumerate the common fixed points of all ~03B3
with 03B3  03B2 when 0  03B2  03A9.

Let ~m03B2 denote the mth iterate of the function ~03B2. The function by
means of which we shall estimate the length of the normal form of a term
is
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where

is the Cantor normal form of 03B2 &#x3E; 0 and ~0(03B1) = 03B1. The functions ~03B2
form a solution to the functional equation

under the initial conditions ~0(03B1) = 03B1 and ~1(03B1) = 203B1. To see this, let

03B2 = 03C903B21m1 + ··· + 03C903B2kmk and 03B3 = 03C903B31n1 + ··· + 03C903B31n1 be the Cantor
normal forms of fi and y. Then

where j is the biggest index i such that 03B2i ~ 03B31. On the other hand, since
the Veblen functions have the fixed point property,

we get

as desired.

There are three properties of the functions ~03B2 that we need in the proof
of the normal form theorem. First, ~03B2 is strictly increasing for every fi.
This is obvious since X, is strictly increasing for every 03B2. Second, as we
have j* ust proved, ~03B2(~03B3(03B1)) ~ ~03B2+03B3(03B1). Third, ~03B2(03B1) · 2 ~ ~03B2(03B1+1) for
all p &#x3E; 0. It is to attain this for fi = 1 that we have chosen ~1(03B1) =
~0(03B1) = 203B1. We then automatically get

for all 03B2 &#x3E; 0.

5. Normal form theorem

As a preliminary step we prove the following simple lemma.

All cut types of the form 03A003C4n can be eliminated from a term without
increasing its length and cut degree.
When a cut type is eliminated by conversion of a subterm, the degrees

of the new cut types that may arise do not exceed the degree of the cut
type we are eliminating. Thus, when a term is reduced, its cut degree
does not increase.

It remains to prove that we can eliminate all cut types of the form

03A003C4n from a given term r without increasing its length. This we do by
induction on r, that is, assuming it has been proved already for all proper
subterms of r, we prove it for r itself. Basis. r = x. Then r is normal
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already. Induction step. Case 1. r = AXt(X). By induction hypothesis,
t(x) red v(x) with l(v(x)) ~ 1(t(x» and no cut types of the form 03A003C4n.
But then r red Âxv(x) which has the desired properties. Case 2. r =
(t0, t1, ···). By induction hypothesis, tn red vn with l(vn) ~ 03BB(tn) and
no undesired cut types. But then r red (vo, va , ...) which has the desired
properties. Case 3. r = ts. By induction hypothesis, s red u and t red v
where l(u) ~ l(s) and l(v) ~ l(t) and u and v have no undesired cut
types. But then r red vu which has the desired properties. Note that vu
may have become convertible even if ts were not, but, according to the
remark above, the degree of the type of v is then no greater than the cut
degree of r = ts. Case 4. r = tn. By induction hypothesis, t red v with
l(v) ~ l(t) and no undesired cut types. If v = (v0, v1, ···), then r red vn
which has the desired properties. If v is not of the form (vo, vi , ...),
then r red vn which again has the desired properties.

A term of length a and cut degree 03B2+ 03B3 reduces to a term of length
~ ~03B3(03B1) and cut degree ~ 03B2.

The proof is by induction on 03B3. Since ~0(03B1) = 03B1, the theorem holds

trivially for y = 0. So suppose that y &#x3E; 0 and that the theorem has been

proved for ail (5  y. We prove it for y by induction on the term r whose
length is a. By the lemma we can assume that r has no cut types of the
form 03A003C4n. Basis. r = x. Then r is normal already. Induction step. As in
the proof of the lemma we distinguish four cases.

Case 1. r = Axt(X). By induction hypothesis, t(x) red v(x) which has
length ~ ~03B3(l(t(x))) and cut degree ~ 03B2. But then r red Âxv(x) which
has length ~ ~03B3(l(t(x)))+1 ~ ~03B3(l(t(x))+ 1) = ~03B3(03B1) and cut degree
~ 03B2.
Case 2. r = (t0, t1, ···). By induction hypothesis, tn red vn where vn

has length ~ qJy(l(tn) and cut degree ~ fi. But then r red (v0, v1, ···)
which has length  max ~03B3(l(tn)) ~ ~03B3(max l(tn)) = ~03B3(03B1) and cut

degree ~ 03B2.
Case 3. r = ts. By induction hypothesis, s red u and t red v where

l(u) ~ ~03B3(l(s)) and l(v) ~ ~03B3(l(t)) and the cut degrees of u and v are ~ 03B2.
If v is not of the form 03BBxw(x) we are done, because then r red vu which
has length  max (qJy(/(s)+ 1, ~03B3(l(t))) ~ ~03B3(max (l(s)+ 1, 1(t))) = 9, (a)
and cut degree ~ 03B2. In the opposite case, r must have been of the form
03BBxt(x)s1 ··· sn where sn = s and each si is either a term or a natural
number. Let the maximum of fi and the degrees of the types of the si that
are terms be 03B2+03B4. Then 03B4  03B3 and 03B3-03B4 ~ 03B3. By induction hypothesis,
t(x) red v(x) which has length ~ ~03B3-03B4(l(t(x))) and cut degree ~ 03B2+03B4.
Also, if si is a term, then si red ui which has length ~03B3-03B4(l(si)) and
cut degree ~ 03B2+03B4. If si is a natural number, put ui = si . Then r red



101

03BBxv(x)u1 ··· un and at most n conversions reduce the latter term to a
term w of length ~ max l(ui)+l(v(x)) ~ ~03B3-03B4(max l(si))+~03B3-03B4(l(t(x)))
~ ~03B3-03B4(max (l(t(x)), max 1(si») - 2 ~ ~03B3-03B4(max (l(t(x)), max 1(si»+ 1)
- ~03B3-03B4(03B1) and cut degree ~ 03B2+03B4. Finally, w reduces to a term of length
~ ~03B4(~03B3-03B4(03B1)) = ~03B3(03B1) and cut degree ~ 03B2.
Case 4. r = tn. By induction hypothesis, t red v which has length

~ ~03B3(l(t)) and cut degree  03B2. If v = (vo, v1,···) then r red vn which
has length ~ l(v) ~ ~03B3(l(t)) = ~03B3(03B1) and cut degree  fi. On the other
hand, if v is not of the form (vo, v1, ···), then r red vn which has length
1(v) ::g ~03B3(l(t)) = ~03B3(03B1) and cut degree ~ 03B2. The proof is finished.
We can now deduce the normal form theorem.

A term of length a and cut degree fi reduces to a normal term of length
~ ~03B2(03B1).
By the previous theorem, a term of length a and cut degree p reduces

to a term of length ~ ~03B2(03B1) and cut degree 0, and, furthermore, the
lemma allows us to assume that the latter term has no cut types of the
form 03A003C4n. But then it must be normal, for if it had a cut type of the form
J - r its cut degree would be ~ d(03C3 ~ 03C4) = max (d(03C3) + 1, d(03C4)) &#x3E; 0.

6. Properties of cut free deductions

In this section we carry over some of the terminology and results of
Prawitz 1965 to the infinite natural deductions we are considering.

In an application of modus ponens

F is called the minor premise and F ~ G the major premise of the conclu-
sion G. Every premise of an application of any of the other three deduc-
tion rules is a major premise of its conclusion. A sequence F1, ···, Fn
of formulae in a deduction form a branch if F, is a top formula, Fi is a
major premise of Fi+ 1 for every i  n and F. is either a minor premise
of modus ponens or the end formula. In the latter case the branch is
said to be a main branch.

A branch of a cut free deduction falls into two parts F1, ···, Fm and
Fm, ···, Fn the first of which consists entirely of elimination inferences
and the second of which consists entirely of introduction inferences, the
dividing formula Fm being called the minimum formula of the branch.
In case m = 1 or m = n one of the parts is absent. This property of the
branches of a cut free deduction makes it very perspicuous. As a simple
application we can prove the consistency theorem.
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No atomic formula is provable.
If an atomic formula were provable, there would be a cut free deduc-

tion of it according to the normal form theorem. Since the end formula
is atomic, a main branch of the cut free deduction must consist entirely
of elimination inferences. But then the assumption in the beginning of a
main branch cannot have been discharged, contradicting the supposition
that all assumptions were discharged.
The branches of a deduction can be ordered in a natural way as follows.

A main branch is assigned the order 0. A branch which ends with a minor
premise of an application of modus ponens is assigned the order n + 1
provided the branch to which the corresponding major premise belongs
was assigned the order n. Note that, although a deduction may be infinite,
every branch of it has finite order. It is convenient to use the notion of

order of a branch when proving the subformula principle.

Every formula in a cut free deduction is a subformula of either the end
formula or an assumption that has not been discharged.
We prove that the assertion holds for all formulae of a certain branch

F1, ···, Fn assuming that it has been proved already for all branches of
lower order. The assertion holds for Fn because Fn is either the end formu-
la of the deduction or a minor premise of an application of modus ponens.
In the latter case Fn is a subformula of the corresponding major premise
which occurs on a branch of one lower order, so that the induction
hypothesis applies to it. From Fn the assertion immediately carries over
to Fm, ···, Fn-1 where Fm is the minimum formula of the branch.

F1, ···, Fm are all subformulae of F1, so if F1 is not discharged we are
done. In the opposite case F, must be discharged by an ~introduction,
the conclusion of which is of the form F1 ~ G and either equals one of
Fm+1, ···, Fn or else occurs on a branch of lower order. In either case
we reach the desired conclusion.

As an application of the subformula principle we prove that the calculus
we are considering is a conservative extension of the positive implicational
calculus.

A cut , free deduction of a purely implicational formula from purely
implicational hypotheses is purely implicational.

This corollary was suggested by William Howard. It is an immediate
consequence of the subformula principle.
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