Skip to content

Latest commit

 

History

History
executable file
·
105 lines (85 loc) · 3.82 KB

README.md

File metadata and controls

executable file
·
105 lines (85 loc) · 3.82 KB

Words To Numbers

Convert words to numbers. Optionally fuzzy match the words to numbers.

npm install words-to-numbers

If the whole string passed is a number then it will return a Number type otherwise it will return the original string with all instances of numbers replaced.

TODO: Add functionality for parsing mixed numbers and words. PRs welcome.

Basic Examples

import wordsToNumbers from 'words-to-numbers';
wordsToNumbers('one hundred'); //100
wordsToNumbers('one hundred and five'); //105
wordsToNumbers('one hundred and twenty five'); //125
wordsToNumbers('four thousand and thirty'); //4030
wordsToNumbers('six million five thousand and two'); //6005002
wordsToNumbers('a thousand one hundred and eleven'); //1111
wordsToNumbers('twenty thousand five hundred and sixty nine'); //20569
wordsToNumbers('five quintillion'); //5000000000000000000
wordsToNumbers('one-hundred'); //100
wordsToNumbers('one-hundred and five'); //105
wordsToNumbers('one-hundred and twenty-five'); //125
wordsToNumbers('four-thousand and thirty'); //4030
wordsToNumbers('six-million five-thousand and two'); //6005002
wordsToNumbers('a thousand, one-hundred and eleven'); //1111
wordsToNumbers('twenty-thousand, five-hundred and sixty-nine'); //20569

Multiple numbers in a string

Returns a string with all instances replaced.

wordsToNumbers('there were twenty-thousand, five-hundred and sixty-nine X in the five quintillion Y')) // 'there were 20569 X in the 5000000000000000000 Y'

With Fuzzy Matching

Uses Jaro distance to find the best match for the number words. Don't rely on this being completely accurate...

import wordsToNumbers from 'words-to-numbers';
wordsToNumbers('won huntred', {fuzzy: true}); //100
wordsToNumbers('too thousant and fiev', {fuzzy: true}); //2005
wordsToNumbers('tree millyon sefen hunderd and twinty sex', {fuzzy: true}); //3000726

Decimal Points

import wordsToNumbers from 'words-to-numbers';
wordsToNumbers('ten point five'); //10.5
wordsToNumbers('three point one four one five nine two six'); //3.1415926

Ordinal Numbers

import wordsToNumbers from 'words-to-numbers';
wordsToNumbers('first'); //1
wordsToNumbers('second'); //2
wordsToNumbers('third'); //3
wordsToNumbers('fourteenth'); //14
wordsToNumbers('twenty fifth'); //25
wordsToNumbers('thirty fourth'); //34
wordsToNumbers('forty seventh'); //47
wordsToNumbers('fifty third'); //53
wordsToNumbers('sixtieth'); //60
wordsToNumbers('seventy second'); //72
wordsToNumbers('eighty ninth'); //89
wordsToNumbers('ninety sixth'); //96
wordsToNumbers('one hundred and eighth'); //108
wordsToNumbers('one hundred and tenth'); //110
wordsToNumbers('one hundred and ninety ninth'); //199

Commonjs

const { wordsToNumbers } = require('words-to-numbers');
wordsToNumbers('one hundred'); //100;

Implied Hundreds

wordsToNumbers('nineteen eighty four', { impliedHundreds: true }); //1984
wordsToNumbers('one thirty', { impliedHundreds: true }); //130
wordsToNumbers('six sixty two', { impliedHundreds: true }); //662
wordsToNumbers('ten twelve', { impliedHundreds: true }); //1012
wordsToNumbers('nineteen ten', { impliedHundreds: true }); //1910
wordsToNumbers('twenty ten', { impliedHundreds: true }); //2010
wordsToNumbers('twenty seventeen', { impliedHundreds: true }); //2017
wordsToNumbers('twenty twenty', { impliedHundreds: true }); //2020
wordsToNumbers('twenty twenty one', { impliedHundreds: true }); //2021
wordsToNumbers('fifty sixty three', { impliedHundreds: true }); //5063
wordsToNumbers('fifty sixty', { impliedHundreds: true }); //5060
wordsToNumbers('fifty sixty three thousand', { impliedHundreds: true }); //5063000
wordsToNumbers('one hundred thousand', { impliedHundreds: true }); //100000