-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_preprocessor.py
37 lines (30 loc) · 1.55 KB
/
data_preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from data_augmentation import AudioAugmentation
import torch
import librosa
from transformers import Wav2Vec2Processor
import numpy as np
class Preprocessor():
def __init__(self, processor:Wav2Vec2Processor, sr:int=16000, audio_augmentation:AudioAugmentation=None,
augment_count:int=2) -> None:
self.processor = processor
self.sr = sr
self.audio_augmentation = audio_augmentation
self.augment_count = augment_count
def preprocess(self, row):
# Load audio with librosa
audio_input, _ = librosa.load(row["audio_filepath"], sr=self.sr) # Resample to 16 kHz
# Prepare list to store audio inputs and labels
preprocessed_data = []
# Add the original audio
inputs = self.processor(audio_input, sampling_rate=self.sr, return_tensors="pt", padding=True)
input_values = inputs.input_values[0]
labels = self.processor.tokenizer(row["text"]).input_ids
preprocessed_data.append({"input_values": input_values, "labels": torch.tensor(labels)})
# Generate augmentations
if self.audio_augmentation:
for _ in range(self.augment_count):
augmented_audio = self.audio_augmentation.augment_audio(audio_input, self.sr)
inputs = self.processor(augmented_audio, sampling_rate=self.sr, return_tensors="pt", padding=True)
input_values = inputs.input_values[0]
preprocessed_data.append({"input_values": input_values, "labels": torch.tensor(labels)})
return preprocessed_data