-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_inference.py
28 lines (23 loc) · 1.13 KB
/
model_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import librosa
def recognize_command(audio_chunk):
"""Recognize command from audio chunk."""
# Preprocess audio (ensure proper tensor format)
input_values = processor(audio_chunk, sampling_rate=16000, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
# Decode the predicted tokens and return the transcription
return processor.decode(predicted_ids[0])
if __name__ == '__main__':
# Load processor and fine-tuned model
processor = Wav2Vec2Processor.from_pretrained("mradovic38/wav2vec2-large-xlsr-53-serbian-smart-home-commands")
model = Wav2Vec2ForCTC.from_pretrained("mradovic38/wav2vec2-large-xlsr-53-serbian-smart-home-commands")
model.eval()
# Load the audio file using librosa (ensuring correct sampling rate)
y, _ = librosa.load('vrata_test.wav', sr=16000)
# Call the recognize_command function with the audio
transcription = recognize_command(y)
# Print the transcription
print("Transcription:", transcription)