diff --git a/DESCRIPTION b/DESCRIPTION index b7aaa69a..4250cab2 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -68,10 +68,12 @@ Encoding: UTF-8 LazyData: true Remotes: mrc-ide/malariaEquilibrium, + mrc-ide/malariaEquilibriumVivax, mrc-ide/individual Imports: individual (>= 0.1.17), malariaEquilibrium (>= 1.0.1), + malariaEquilibriumVivax, Rcpp, statmod, MASS, diff --git a/NAMESPACE b/NAMESPACE index 167c0f0e..d3fe01a6 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -10,6 +10,7 @@ export(gamb_params) export(get_correlation_parameters) export(get_init_carrying_capacity) export(get_parameters) +export(kol_params) export(parameterise_mosquito_equilibrium) export(parameterise_total_M) export(peak_season_offset) diff --git a/R/biting_process.R b/R/biting_process.R index 17b75366..b28fe327 100644 --- a/R/biting_process.R +++ b/R/biting_process.R @@ -169,14 +169,14 @@ simulate_bites <- function( } } + lagged_infectivity$save(sum(human_infectivity * .pi), timestep) + if (is.null(mixing_fn)) { infectivity <- lagged_infectivity$get(timestep - parameters$delay_gam) } else { infectivity <- mixing_fn(timestep=timestep)$inf[[mixing_index]] } - lagged_infectivity$save(sum(human_infectivity * .pi), timestep) - foim <- calculate_foim(a, infectivity) renderer$render(paste0('FOIM_', species_name), foim, timestep) mu <- death_rate(f, W, Z, s_i, parameters) diff --git a/R/compatibility.R b/R/compatibility.R index ec71d3df..6833f695 100644 --- a/R/compatibility.R +++ b/R/compatibility.R @@ -4,6 +4,10 @@ inverse_param <- function(name, new_name) { function(params) { list(new_name, 1 / params[[name]]) } } +product_param <- function(new_name, name_1, name_2) { + function(params) { list(new_name, params[[name_1]] * params[[name_2]]) } +} + mean_param <- function(new_name, name, weights) { function(params) { list(new_name, weighted.mean(params[[name]], params[[weights]])) @@ -120,6 +124,56 @@ back_translations = list( kv = 'kv' ) +vivax_translations = list( + + mean_age = 'average_age', + rho_age = 'rho', + age_0 = 'a0', + N_het = 'n_heterogeneity_groups', + + bb = 'b', ## mosquito -> human transmission probability + + c_PCR = 'cu', ## human -> mosquito transmission probability (PCR) + c_LM = 'ca', ## human -> mosquito transmission probability (LM-detectable) + c_D = 'cd', ## human -> mosquito transmission probability (disease state) + c_T = 'ct', ## human -> mosquito transmission probability (treatment) + + d_E = 'de', ## duration of liver-stage latency + r_D = inverse_param('dd', 'r_D'), ## duraton of disease = 1/rate + r_T = inverse_param('dt', 'r_T'), ## duraton of prophylaxis = 1/rate + + r_par = inverse_param('ra', 'r_par'), ## rate of decay of anti-parasite immunity + r_clin= inverse_param('rc', 'r_clin'), ## rate of decay of clinical immunity + + mu_M = mean_param('mum', 'mum', 'species_proportions'), ## mosquito death rate = 1/(mosquito life expectancy) + Q0 = mean_param('Q0', 'Q0', 'species_proportions'), + blood_meal_rates = mean_param('blood_meal_rates', 'blood_meal_rates', 'species_proportions'), + tau_M = 'dem', ## duration of sporogony + + ff = 'f', ## relapse rate + gamma_L = 'gammal', ## duration of liver-stage carriage + K_max = 'kmax', ## maximum hypnozoite batches + + u_par = 'ua', ## refractory period for anti-parasite immune boosting + phi_LM_max = 'philm_max', ## probability of LM_detectable infection with no immunity + phi_LM_min = 'philm_min', ## probability of LM_detectable infection with maximum immunity + A_LM_50pc = 'alm50', ## blood-stage immunity scale parameter + K_LM = 'klm', ## blood-stage immunity shape parameter + u_clin = 'uc', ## refractory period for clinical immune boosting + phi_D_max = 'phi0', ## probability of clinical episode with no immunity + phi_D_min = product_param("phi_D_min", "phi0", "phi1"), ## probability of clinical episode with maximum immunity + A_D_50pc = 'ic0', ## clinical immunity scale parameter + K_D = 'kc', ## clinical immunity shape parameter + A_d_PCR_50pc = 'apcr50', ## scale parameter for effect of anti-parasite immunity on PCR-detectable infection + K_d_PCR = 'kpcr', ## shape parameter for effect of anti-parasite immunity on PCR-detectable infection + d_PCR_max = 'dpcr_max', ## maximum duration on PCR-detectable infection + d_PCR_min = 'dpcr_min', ## maximum duration of PCR-detectable infection + d_LM = 'da', ## duration of LM-detectable infection + P_MI = 'pcm', ## Proportion of immunity acquired maternally + d_MI = 'rm' ## Rate of waning of maternal immunity + +) + #' @description translate parameter keys from the malariaEquilibrium format #' to ones compatible with this IBM #' @param params with keys in the malariaEquilibrium format @@ -162,6 +216,23 @@ translate_parameters <- function(params) { translated } +#' @description translate parameter keys from the malariaVivaxEquilibrium format +#' to ones compatible with this IBM +#' @param params with keys in the malariaVivaxEquilibrium format +#' @noRd +translate_vivax_parameters <- function(params) { + translated <- params + for (i in 1:length(vivax_translations)) { + if (is.character(vivax_translations[[i]])) { + translated[[names(vivax_translations)[i]]] <- params[[vivax_translations[[i]]]] + } + if (is.function(vivax_translations[[i]])) { + translated[[names(vivax_translations)[i]]] <- vivax_translations[[i]](params)[[2]] + } + } + translated +} + #' @title remove parameter keys from the malariaEquilibrium format that are not used #' in this IBM #' @param params with keys in the malariaEquilibrium format @@ -182,7 +253,7 @@ remove_unused_equilibrium <- function(params) { #' @title Set equilibrium #' @description This will update the IBM parameters to match the #' equilibrium parameters and set up the initial human and mosquito population -#' to acheive init_EIR +#' to achieve init_EIR #' @param parameters model parameters to update #' @param init_EIR the desired initial EIR (infectious bites per person per day over the entire human #' population) @@ -190,28 +261,50 @@ remove_unused_equilibrium <- function(params) { #' The default malariaEquilibrium parameters will be used #' @export set_equilibrium <- function(parameters, init_EIR, eq_params = NULL) { - if (is.null(eq_params)) { - eq_params <- translate_parameters(parameters) - } else { + if(parameters$parasite == "falciparum"){ + if (is.null(eq_params)) { + eq_params <- translate_parameters(parameters) + } else { + parameters <- c( + translate_equilibrium(remove_unused_equilibrium(eq_params)), + parameters + ) + } + eq <- malariaEquilibrium::human_equilibrium( + EIR = init_EIR, + ft = sum(get_treatment_coverages(parameters, 1)), + p = eq_params, + age = EQUILIBRIUM_AGES, + h = malariaEquilibrium::gq_normal(parameters$n_heterogeneity_groups) + ) + parameters <- c( + list( + init_foim = eq$FOIM, + init_EIR = init_EIR, + eq_params = eq_params + ), + parameters + ) + } else if (parameters$parasite == "vivax"){ + + if (!(is.null(eq_params))) { + stop("Importing MalariaEquilibriumVivax parameters is not supported") + } + + eq <- malariaEquilibriumVivax::vivax_equilibrium( + EIR = init_EIR, + ft = sum(get_treatment_coverages(parameters, 1)), + p = translate_vivax_parameters(parameters), + age = EQUILIBRIUM_AGES + ) + parameters <- c( - translate_equilibrium(remove_unused_equilibrium(eq_params)), + list( + init_foim = eq$FOIM, + init_EIR = init_EIR + ), parameters ) } - eq <- malariaEquilibrium::human_equilibrium( - EIR = init_EIR, - ft = sum(get_treatment_coverages(parameters, 1)), - p = eq_params, - age = EQUILIBRIUM_AGES, - h = malariaEquilibrium::gq_normal(parameters$n_heterogeneity_groups) - ) - parameters <- c( - list( - init_foim = eq$FOIM, - init_EIR = init_EIR, - eq_params = eq_params - ), - parameters - ) parameterise_mosquito_equilibrium(parameters, init_EIR) } diff --git a/R/human_infection.R b/R/human_infection.R index fc5a98ba..c8342de0 100644 --- a/R/human_infection.R +++ b/R/human_infection.R @@ -119,7 +119,6 @@ calculate_infections <- function( ) } - # infection_rates <- rep(0, length = parameters$human_population) if(parameters$parasite == "falciparum"){ ## p.f models blood immunity @@ -205,15 +204,16 @@ infection_outcome_process <- function( timestep ) - boost_immunity( - variables$ica, - infected_humans, - variables$last_boosted_ica, - timestep, - parameters$uc - ) - if(parameters$parasite == "falciparum"){ + + boost_immunity( + variables$ica, + infected_humans, + variables$last_boosted_ica, + timestep, + parameters$uc + ) + boost_immunity( variables$id, infected_humans, @@ -261,13 +261,23 @@ infection_outcome_process <- function( renderer, timestep ) - + + boost_immunity( + variables$ica, + infected_humans, + variables$last_boosted_ica, + timestep, + parameters$uc, + 1/parameters$rc + ) + boost_immunity( variables$iaa, infected_humans, variables$last_boosted_iaa, timestep, - parameters$ua + parameters$ua, + 1/parameters$ra ) ## Only S and U infections are considered in generating lm-det infections @@ -744,7 +754,8 @@ boost_immunity <- function( exposed_index, last_boosted_variable, timestep, - delay + delay, + decay_rate = 0 ) { # record who can be boosted exposed_index_vector <- exposed_index$to_vector() @@ -754,7 +765,7 @@ boost_immunity <- function( if (sum(to_boost) > 0) { # boost the variable immunity_variable$queue_update( - immunity_variable$get_values(exposed_to_boost) + 1, + immunity_variable$get_values(exposed_to_boost) * (1-decay_rate) + 1, exposed_to_boost ) # record last boosted diff --git a/R/processes.R b/R/processes.R index f8b3b1be..c1f5bb95 100644 --- a/R/processes.R +++ b/R/processes.R @@ -47,7 +47,7 @@ create_processes <- function( immunity_process = create_exponential_decay_process(variables$ica, parameters$rc) ) - + if(parameters$parasite == "falciparum"){ processes <- c( processes, diff --git a/R/variables.R b/R/variables.R index b6bd1f80..9745d026 100644 --- a/R/variables.R +++ b/R/variables.R @@ -82,26 +82,49 @@ create_variables <- function(parameters) { to_char_vector(groups) ) if (!is.null(parameters$init_EIR)) { - eq <- list( - malariaEquilibrium::human_equilibrium_no_het( - parameters$init_EIR, - sum(get_treatment_coverages(parameters, 0)), - parameters$eq_params, - EQUILIBRIUM_AGES + if(parameters$parasite == "falciparum"){ + eq <- list( + malariaEquilibrium::human_equilibrium_no_het( + parameters$init_EIR, + sum(get_treatment_coverages(parameters, 0)), + parameters$eq_params, + EQUILIBRIUM_AGES + ) ) - ) + } else if (parameters$parasite == "vivax"){ + eq <- malariaEquilibriumVivax::vivax_equilibrium( + EIR = parameters$init_EIR, + ft = sum(get_treatment_coverages(parameters, 0)), + p = translate_vivax_parameters(parameters), + age = EQUILIBRIUM_AGES + )$states + } } else { eq <- NULL } } states <- c('S', 'D', 'A', 'U', 'Tr') - initial_states <- initial_state(parameters, initial_age, groups, eq, states) + + if(parameters$parasite == "falciparum"){ + initial_states <- initial_state(parameters, initial_age, groups, eq, states) + hypnozoite_v <- NULL + + } else if (parameters$parasite == "vivax"){ + + eq_v_output <- initial_state_vivax(parameters, initial_age, groups, eq, states) + + # Human states + initial_states <- eq_v_output$human_states + hypnozoite_v <- eq_v_output$hypnozoites_v + + ## Initial hypnozoites + hypnozoites <- individual::IntegerVariable$new(hypnozoite_v) + + } + state <- individual::CategoricalVariable$new(states, initial_states) birth <- individual::IntegerVariable$new(-initial_age) - if(parameters$parasite == "vivax"){ - hypnozoites <- individual::IntegerVariable$new(rep(parameters$init_hyp, parameters$human_population)) - } # Maternal immunity to clinical disease icm <- individual::DoubleVariable$new( @@ -111,7 +134,8 @@ create_variables <- function(parameters) { groups, eq, parameters, - 'ICM' + 'ICM', + hypnozoite_v ) ) @@ -124,7 +148,8 @@ create_variables <- function(parameters) { groups, eq, parameters, - 'ICA' + 'ICA', + hypnozoite_v ) ) @@ -189,7 +214,8 @@ create_variables <- function(parameters) { groups, eq, parameters, - 'IAM' + 'IAM', + hypnozoite_v ) ) @@ -202,11 +228,12 @@ create_variables <- function(parameters) { groups, eq, parameters, - 'IAA' + 'IAA', + hypnozoite_v ) ) } - + # Initialise infectiousness of humans -> mosquitoes # NOTE: not yet supporting initialisation of infectiousness of Treated individuals infectivity_values <- rep(0, get_human_population(parameters, 0)) @@ -386,7 +413,8 @@ initial_immunity <- function( groups = NULL, eq = NULL, parameters = NULL, - eq_name = NULL + eq_name = NULL, + hyp = NULL ) { if (!is.null(eq)) { age <- age / 365 @@ -395,7 +423,12 @@ initial_immunity <- function( function(i) { g <- groups[[i]] a <- age[[i]] - eq[[g]][which.max(a < eq[[g]][, 'age']), eq_name] + if(parameters$parasite == "falciparum"){ + eq[[g]][which.max(a < eq[[g]][, 'age']), eq_name] + } else if (parameters$parasite == "vivax"){ + h <- hyp[[i]] + eq[[eq_name]][which.max(a < eq$Age[-1]), g, h+1] + } } )) } @@ -423,6 +456,30 @@ initial_state <- function(parameters, age, groups, eq, states) { rep(ibm_states, times = calculate_initial_counts(parameters)) } +initial_state_vivax <- function(parameters, age, groups, eq, states) { + # vivax human states and hypnozoites must be calculated over a combined probability distribution + ibm_states <- states + if (!is.null(eq)) { + eq_states <- c('S', 'D', 'A', 'U', 'T') + age <- age / 365 + human_states_pop <- sapply( + seq_along(age), + function(i) { + g <- groups[[i]] + a <- age[[i]] + human_states <- c(expand.grid("hyp" = 0:parameters$kmax, "human_state" = eq_states)) + probs <- c(sapply(eq_states, function(state){eq[[state]][which.max(a < eq$Age[-1]), g, ]})) + smp <- sample(x = 1:length(probs), size = 1, replace = T, prob = probs) + return(c(human_states$human_state[smp],human_states$hyp[smp])) + } + ) + return(list(human_states = states[human_states_pop[1,]], + hypnozoites_v = human_states_pop[2,])) + } + return(list(human_states = rep(ibm_states, calculate_initial_counts(parameters)), + hypnozoites_v = rep(parameters$init_hyp, parameters$human_population))) +} + calculate_initial_counts <- function(parameters) { pop <- get_human_population(parameters, 0) initial_counts <- round( @@ -441,17 +498,26 @@ calculate_initial_counts <- function(parameters) { calculate_eq <- function(het_nodes, parameters) { ft <- sum(get_treatment_coverages(parameters, 0)) - lapply( - het_nodes, - function(n) { - malariaEquilibrium::human_equilibrium_no_het( - parameters$init_EIR * calculate_zeta(n, parameters), - ft, - parameters$eq_params, - EQUILIBRIUM_AGES - ) - } - ) + if(parameters$parasite == "falciparum"){ + lapply( + het_nodes, + function(n) { + malariaEquilibrium::human_equilibrium_no_het( + parameters$init_EIR * calculate_zeta(n, parameters), + ft, + parameters$eq_params, + EQUILIBRIUM_AGES + ) + } + ) + } else if (parameters$parasite == "vivax"){ + eq <- malariaEquilibriumVivax::vivax_equilibrium( + EIR = parameters$init_EIR, + ft = sum(get_treatment_coverages(parameters, 0)), + age = EQUILIBRIUM_AGES, + p = translate_vivax_parameters(parameters) + )$states + } } calculate_zeta <- function(zeta_norm, parameters) { diff --git a/R/vector_parameters.R b/R/vector_parameters.R index 2024d253..11040d82 100644 --- a/R/vector_parameters.R +++ b/R/vector_parameters.R @@ -94,6 +94,30 @@ steph_params <- list( mum = .112 ) +#' @title Preset parameters for the An. koliensis vector +#' @details Default parameters: +#' species: "kol" +#' blood_meal_rates: 0.3333333 +#' foraging_time: .68 +#' Q0: 0.5 +#' phi_bednets: 0.9 +#' phi_indoors: 0.5 +#' mum: 0.1666667 +#' +#' parameters reference: +#' https://github.com/MWhite-InstitutPasteur/Pvivax_IBM/blob/master/koliensis_parameters.txt +#' Value for blood meal rate is assumed in absence of phi are from: +#' @export +kol_params <- list( + species = 'kol', + blood_meal_rates = 1/3, + foraging_time = 0.68, + Q0 = 0.5, + phi_bednets = 0.9, + phi_indoors = 0.5, + mum = 0.1666667 +) + #' @title Parameterise the mosquito species to use in the model #' #' @param parameters the model parameters diff --git a/man/kol_params.Rd b/man/kol_params.Rd new file mode 100644 index 00000000..3047a46c --- /dev/null +++ b/man/kol_params.Rd @@ -0,0 +1,30 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/vector_parameters.R +\docType{data} +\name{kol_params} +\alias{kol_params} +\title{Preset parameters for the An. koliensis vector} +\format{ +An object of class \code{list} of length 7. +} +\usage{ +kol_params +} +\description{ +Preset parameters for the An. koliensis vector +} +\details{ +Default parameters: +species: "kol" +blood_meal_rates: 0.3333333 +foraging_time: .68 +Q0: 0.5 +phi_bednets: 0.9 +phi_indoors: 0.5 +mum: 0.1666667 + +parameters reference: +https://github.com/MWhite-InstitutPasteur/Pvivax_IBM/blob/master/koliensis_parameters.txt +Value for blood meal rate is assumed in absence of phi are from: +} +\keyword{datasets} diff --git a/man/set_equilibrium.Rd b/man/set_equilibrium.Rd index 0ed691b8..1268cee9 100644 --- a/man/set_equilibrium.Rd +++ b/man/set_equilibrium.Rd @@ -18,5 +18,5 @@ The default malariaEquilibrium parameters will be used} \description{ This will update the IBM parameters to match the equilibrium parameters and set up the initial human and mosquito population -to acheive init_EIR +to achieve init_EIR } diff --git a/tests/testthat/test-vivax-biology.R b/tests/testthat/test-vivax-biology.R new file mode 100644 index 00000000..df471279 --- /dev/null +++ b/tests/testthat/test-vivax-biology.R @@ -0,0 +1,214 @@ +test_that('total_M and EIR functions are consistent with equilibrium EIR', { + skip_on_ci() + expected_EIR <- c(1, 5, 10, 100) + population <- 1000 + parameters <- get_parameters(parasite = "vivax", + list( + human_population = population, + enable_heterogeneity = FALSE + ) + ) + actual_EIR <- vnapply(expected_EIR, function(EIR) { + parameters <- set_equilibrium(parameters, EIR) + + #set up arguments for EIR calculation + variables <- create_variables(parameters) + vector_models <- parameterise_mosquito_models(parameters, 1) + solvers <- parameterise_solvers(vector_models, parameters) + estimated_eir <- calculate_eir(1, solvers, variables, parameters, 0) + mean(estimated_eir) / population * 365 + }) + + expect_equal( + actual_EIR, + expected_EIR, + tolerance = 1e-4 + ) +}) + +test_that('total_M and EIR functions are consistent with equilibrium EIR (with het)', { + skip_on_ci() + population <- 1000 + + expected_EIR <- c(1, 5, 10, 100) + + parameters <- get_parameters(parasite = "vivax", + list(human_population = population)) + + actual_EIR <- vnapply(expected_EIR, function(EIR) { + parameters <- set_equilibrium(parameters, EIR) + + variables <- create_variables(parameters) + vector_models <- parameterise_mosquito_models(parameters, 1) + solvers <- parameterise_solvers(vector_models, parameters) + estimated_eir <- calculate_eir(1, solvers, variables, parameters, 0) + mean(estimated_eir) / population * 365 + }) + + expect_equal( + actual_EIR, + expected_EIR, + tolerance = 1e-4 + ) +}) + +test_that('FOIM is consistent with equilibrium', { + skip_on_ci() + population <- 10000 + + EIRs <- c(1, 5, 10, 100) + + eq_params <- get_parameters(parasite = "vivax") + + ages <- 0:800 / 10 + expected_foim <- vnapply( + EIRs, + function(EIR) { + malariaEquilibriumVivax::vivax_equilibrium( + age = EQUILIBRIUM_AGES, + ft = 0, + EIR = EIR, + p = translate_vivax_parameters(eq_params))$FOIM + } + ) + + actual_foim <- vnapply( + EIRs, + function(EIR) { + parameters <- get_parameters(parasite = "vivax", list(human_population = population)) + parameters <- set_equilibrium(parameters, EIR) + variables <- create_variables(parameters) + a <- human_blood_meal_rate(1, variables, parameters, 0) + age <- get_age(variables$birth$get_values(), 0) + psi <- unique_biting_rate(age, parameters) + zeta <- variables$zeta$get_values() + .pi <- human_pi(psi, zeta) + calculate_foim(a, sum(.pi * variables$infectivity$get_values())) + } + ) + expect_equal( + expected_foim, + actual_foim, + tolerance = 5e-3 + ) +}) + +test_that('phi is consistent with equilibrium at high EIR (no het)', { + skip_on_ci() + population <- 1e5 + + EIR <- 100 + ages <- 0:800 / 10 + + parameters <- get_parameters(parasite = "vivax", list( + human_population = population, + n_heterogeneity_groups = 1, + enable_heterogeneity = FALSE + )) + parameters <- set_equilibrium(parameters, EIR) + + eq <- malariaEquilibriumVivax::vivax_equilibrium( + EIR = EIR, + ft = 0, + p = translate_vivax_parameters(parameters), + age = EQUILIBRIUM_AGES)$states + + variables <- create_variables(parameters) + expect_equal( + mean( + clinical_immunity( + variables$ica$get_values(), + variables$icm$get_values(), + parameters + ) + ), + sum(c(eq$phi_clin * eq$HH)), + tolerance=1e-2 + ) + + # Check phi_patent + expect_equal( + mean( + anti_parasite_immunity(min = parameters$philm_min, max = parameters$philm_max, + a50 = parameters$alm50, k = parameters$klm, + iaa = variables$iaa$get_values(), + iam = variables$iam$get_values() + ) + ), + sum(c(eq$phi_patent * eq$HH)), + tolerance=1e-2 + ) + + # Check r_PCR + expect_equal( + mean( + 1/anti_parasite_immunity(min = parameters$dpcr_min, max = parameters$dpcr_max, + a50 = parameters$apcr50, k = parameters$kpcr, + iaa = variables$iaa$get_values(), + iam = variables$iam$get_values() + ) + ), + sum(c(eq$r_PCR * eq$HH)), + tolerance=1e-2 + ) + +}) + +test_that('phi is consistent with equilibrium at high EIR', { + skip_on_ci() + population <- 1e5 + + EIR <- 100 + ages <- 0:999 / 10 + + parameters <- get_parameters(parasite = "vivax", + list(human_population = population)) + parameters <- set_equilibrium(parameters, EIR) + + eq <- malariaEquilibriumVivax::vivax_equilibrium( + age = EQUILIBRIUM_AGES, + ft = 0, + EIR = EIR, + p = translate_vivax_parameters(parameters))$states + + variables <- create_variables(parameters) + het <- statmod::gauss.quad.prob(parameters$n_heterogeneity_groups, dist = "normal") + expect_equal( + mean( + clinical_immunity( + variables$ica$get_values(), + variables$icm$get_values(), + parameters + ) + ), + sum(c(eq$phi_clin * eq$HH)), + tolerance=1e-2 + ) + + # Check phi_patent + expect_equal( + mean( + anti_parasite_immunity(min = parameters$philm_min, max = parameters$philm_max, + a50 = parameters$alm50, k = parameters$klm, + iaa = variables$iaa$get_values(), + iam = variables$iam$get_values() + ) + ), + sum(c(eq$phi_patent * eq$HH)), + tolerance=1e-2 + ) + + # Check r_PCR + expect_equal( + mean( + 1/anti_parasite_immunity(min = parameters$dpcr_min, max = parameters$dpcr_max, + a50 = parameters$apcr50, k = parameters$kpcr, + iaa = variables$iaa$get_values(), + iam = variables$iam$get_values() + ) + ), + sum(c(eq$r_PCR * eq$HH)), + tolerance=1e-2 + ) + +}) diff --git a/tests/testthat/test-vivax-compartmental.R b/tests/testthat/test-vivax-compartmental.R new file mode 100644 index 00000000..06a69ed0 --- /dev/null +++ b/tests/testthat/test-vivax-compartmental.R @@ -0,0 +1,161 @@ +test_that('vivax ODE stays at equilibrium with a constant total_M', { + parameters <- get_parameters(list( + individual_mosquitoes = TRUE + ), parasite = "vivax") + total_M <- 1000 + timesteps <- 365 * 10 + f <- parameters$blood_meal_rates + models <- parameterise_mosquito_models(parameters, timesteps) + solvers <- parameterise_solvers(models, parameters) + + counts <- c() + + for (t in seq(timesteps)) { + counts <- rbind(counts, c(t, solvers[[1]]$get_states())) + aquatic_mosquito_model_update( + models[[1]]$.model, + total_M, + f, + parameters$mum + ) + solvers[[1]]$step() + } + + expected <- c() + equilibrium <- initial_mosquito_counts( + parameters, + 1, + parameters$init_foim, + parameters$total_M + )[ODE_INDICES] + for (t in seq(timesteps)) { + expected <- rbind(expected, c(t, equilibrium)) + } + + expect_equal(counts, expected, tolerance=1e-4) +}) + +test_that('vivax Adult ODE stays at equilibrium with a constant foim and mu', { + parameters <- get_parameters(parasite = "vivax") + parameters <- set_equilibrium(parameters, 100.) + f <- parameters$blood_meal_rates + timesteps <- 365 * 10 + models <- parameterise_mosquito_models(parameters, timesteps) + solvers <- parameterise_solvers(models, parameters) + + counts <- c() + + for (t in seq(timesteps)) { + states <- solvers[[1]]$get_states() + counts <- rbind(counts, c(t, states)) + adult_mosquito_model_update( + models[[1]]$.model, + parameters$mum, + parameters$init_foim, + states[ADULT_ODE_INDICES['Sm']], + f + ) + solvers[[1]]$step() + } + + expected <- c() + equilibrium <- initial_mosquito_counts( + parameters, + 1, + parameters$init_foim, + parameters$total_M + ) + + for (t in seq(timesteps)) { + expected <- rbind(expected, c(t, equilibrium)) + } + expect_equal(counts, expected, tolerance=1e-3) +}) + +test_that('vivax ODE stays at equilibrium with low total_M', { + total_M <- 10 + parameters <- get_parameters(list( + total_M = total_M, + individual_mosquitoes = TRUE + ), parasite = "vivax") + timesteps <- 365 * 10 + f <- parameters$blood_meal_rates + models <- parameterise_mosquito_models(parameters, timesteps) + solvers <- parameterise_solvers(models, parameters) + + + counts <- c() + + for (t in seq(timesteps)) { + counts <- rbind(counts, c(t, solvers[[1]]$get_states())) + aquatic_mosquito_model_update( + models[[1]]$.model, + total_M, + f, + parameters$mum + ) + solvers[[1]]$step() + } + + expected <- c() + equilibrium <- initial_mosquito_counts( + parameters, + 1, + parameters$init_foim, + parameters$total_M + )[ODE_INDICES] + + for (t in seq(timesteps)) { + expected <- rbind(expected, c(t, equilibrium)) + } + + expect_equal(counts, expected, tolerance=1e-4) +}) + + +test_that('vivax changing total_M stabilises', { + total_M_0 <- 500 + total_M_1 <- 400 + parameters <- get_parameters(list( + total_M = total_M_0, + individual_mosquitoes = TRUE + ), parasite = "vivax") + f <- parameters$blood_meal_rates + timesteps <- 365 * 10 + models <- parameterise_mosquito_models(parameters, timesteps) + solvers <- parameterise_solvers(models, parameters) + + change <- 50 + burn_in <- 365 * 5 + + counts <- c() + + for (t in seq(timesteps)) { + counts <- rbind(counts, c(t, solvers[[1]]$get_states())) + if (t < change) { + total_M <- total_M_0 + } else { + total_M <- total_M_1 + } + aquatic_mosquito_model_update( + models[[1]]$.model, + total_M, + f, + parameters$mum + ) + solvers[[1]]$step() + } + + initial_eq <- initial_mosquito_counts( + parameters, + 1, + parameters$init_foim, + parameters$total_M + )[ODE_INDICES] + final_eq <- counts[burn_in, ODE_INDICES + 1] + + expect_equal(counts[1,], c(1, initial_eq), tolerance=1e-4) + expect_equal(counts[timesteps,], c(timesteps, final_eq), tolerance=1e-4) + expect_false(isTRUE(all.equal(initial_eq, final_eq))) + expect_false(any(is.na(counts))) +}) diff --git a/tests/testthat/test-vivax-eq.R b/tests/testthat/test-vivax-eq.R new file mode 100644 index 00000000..f008d889 --- /dev/null +++ b/tests/testthat/test-vivax-eq.R @@ -0,0 +1,86 @@ +test_that('Initial states are consistent with equilibrium', { + skip_on_ci() + population <- 10000 + + EIRs <- c(1, 5, 10, 100, 0.1*365) + + eq_params <- get_parameters(parasite = "vivax", overrides = list(human_population = population)) + + expected_states <- sapply( + EIRs, + function(EIR) { + eq <- malariaEquilibriumVivax::vivax_equilibrium( + age = EQUILIBRIUM_AGES, + ft = 0, + EIR = EIR, + p = translate_vivax_parameters(eq_params))$states + return(sapply(c("S","D","A","U","T"), function(state){sum(eq[[state]])})) + }) + + actual_states <- sapply( + EIRs, + function(EIR) { + parms <- set_equilibrium(eq_params, init_EIR = EIR) + vars <- create_variables(parameters = parms) + + return(c(vars$state$get_size_of("S"), + vars$state$get_size_of("D"), + vars$state$get_size_of("A"), + vars$state$get_size_of("U"), + vars$state$get_size_of("Tr"))) + })/population + + expect_equal(object = c(expected_states), expected = c(actual_states), tolerance = 1E-2) + +}) + +test_that('Initial immunities are consistent with equilibrium', { + skip_on_ci() + population <- 10000 + + EIRs <- c(1, 5, 10, 100, 0.1*365) + + eq_params <- get_parameters(parasite = "vivax", overrides = list(human_population = population)) + eq_params <- set_species(parameters = eq_params, species = list(arab_params), proportions = 1) + + expected_averages <- sapply( + EIRs, + function(EIR) { + het <- malariaEquilibrium::gq_normal(eq_params$n_heterogeneity_groups) + eq <- malariaEquilibriumVivax::vivax_equilibrium( + age = EQUILIBRIUM_AGES, + ft = 0, + EIR = EIR, + p = translate_vivax_parameters(eq_params))$states + + return(c(sapply(c("ICA","ICM","IAA","IAM"), function(x){sum(eq$HH * eq[[x]])}), + sum(colSums(eq$HH, dims = 2) * c(1:dim(eq$HH)[3]-1)))) + }) + + + actual_averages <- sapply( + EIRs, + function(EIR) { + + parms <- set_equilibrium(eq_params, init_EIR = EIR) + vars <- create_variables(parameters = parms) + + return(c(mean(vars$ica$get_values()), + mean(vars$icm$get_values()), + mean(vars$iaa$get_values()), + mean(vars$iam$get_values()), + mean(vars$hypnozoites$get_values())))}) + + expect_equal(object = c(expected_averages), expected = c(actual_averages), tolerance = 1E-1) + +}) + +test_that('vivax equilibrium works with multiple species', { + skip_on_ci() + + simparams_pv <- get_parameters(parasite="vivax") + params_species_pv <- set_species(parameters = simparams_pv, + species = list(arab_params, fun_params, gamb_params), + proportions = c(0.1,0.3,0.6)) + expect_no_error(set_equilibrium(params_species_pv, 6)) +}) diff --git a/vignettes/Plasmodium_vivax.Rmd b/vignettes/Plasmodium_vivax.Rmd index 67c0227e..a9a5b22e 100644 --- a/vignettes/Plasmodium_vivax.Rmd +++ b/vignettes/Plasmodium_vivax.Rmd @@ -75,6 +75,10 @@ While the *P. falciparum* model calculates the onward infectivity of asymptomati The *P. vivax* model tracks the number of hypnozoite batches of each individual which contribute to the rate of new infections. Acquisition of new batches comes from bite infections and are capped (where `kmax = 10` by default). All individuals can acquire new hypnozoite batches via bites, even when these do not result in new blood-stage infection (as in the clinically diseased and treated). Hypnozoite batches are lost probabilistically where an individual's number of batches determines the loss rate of a single batch. +### Equilibrium + +The malariaEquilibriumVivax package has been designed to calculate the equilibrium solution for the *P. vivax* model. This equilibrium is calculated by assigning an initial EIR value via the `set_equilibrium` function, as in the *P. falciparum* model. Based on the age and heterogeneity group of an individual, it assigns a human disease state, clinical and anti-parasite immunities and number of hypnozoite batches. + ### Key Model References White, M. T., Walker, P., Karl, S., Hetzel, M. W., Freeman, T., Waltmann, A., Laman, M., Robinson, L. J., Ghani, A., & Mueller, I. (2018). Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax. Nature Communications, 9(1), 1–10.