Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat/grid #281

Draft
wants to merge 3 commits into
base: dev
Choose a base branch
from
Draft

Feat/grid #281

wants to merge 3 commits into from

Conversation

giovannic
Copy link
Member

Still WIP. Speed up rendering of statistics in year wide age-bands between 0 and 100.

Here is an example of how it would be run:

library(malariasimulation)

# Parameters that specify more output with a single age group
p_single_age <- get_parameters(
  overrides = list(
    human_population = 1000
  )
) |>
  set_equilibrium(
    init_EIR = 5
  )
p_single_age$prevalence_rendering_min_ages <- 0
p_single_age$prevalence_rendering_max_ages <- 100 * 365

# Parameters that specify output with multiple age groups
p_multiple_age <- p_single_age
p_multiple_age$prevalence_rendering_min_ages <- 0:99 * 365
p_multiple_age$prevalence_rendering_max_ages <- 1:100 * 365 - 1
p_multiple_age$clinical_incidence_rendering_min_ages <- 0:99 * 365
p_multiple_age$clinical_incidence_rendering_max_ages <- 1:100 * 365 - 1

p_grid <- p_single_age
p_grid$render_grid <- c('p_detect_', 'p_inc_clinical_')

set.seed(1)

system.time({
  s_single_age <- run_simulation(
    timesteps = 365 * 2,
    parameters = p_single_age
  )
})

set.seed(1)

system.time({
  s_grid <- run_simulation(
    timesteps = 365 * 2,
    parameters = p_grid
  )
})

jpeg('grid.jpg')
for (i in c(1, 50, 100)) {
  if (i == 1) {
    plot(
      as.numeric(s_grid$timestep),
      as.numeric(s_grid[[paste0(
        'grid_p_detect_',
        i
      )]]),
      type = 'l'
    )
  } else {
    lines(
      as.numeric(s_grid$timestep),
      as.numeric(s_grid[[paste0(
        'grid_p_detect_',
        i
      )]])
    )
  }
}
dev.off()

jpeg('grid_inc.jpg')
for (i in c(1, 50, 100)) {
  if (i == 1) {
    plot(
      as.numeric(s_grid$timestep),
      as.numeric(s_grid[[paste0(
        'grid_p_inc_clinical_',
        i
      )]]),
      type = 'l'
    )
  } else {
    lines(
      as.numeric(s_grid$timestep),
      as.numeric(s_grid[[paste0(
        'grid_p_inc_clinical_',
        i
      )]])
    )
  }
}
dev.off()


set.seed(1)

system.time({
  s_multiple_age <- run_simulation(
    timesteps = 365 * 2,
    parameters = p_multiple_age
  )
})

jpeg('multiple.jpg')
for (i in c(1, 50, 100)) {
  if (i == 1) {
    plot(
      as.numeric(s_multiple_age$timestep),
      as.numeric(s_multiple_age[[paste0(
        'p_detect_',
        p_multiple_age$prevalence_rendering_min_ages[i],
        '_',
        p_multiple_age$prevalence_rendering_max_ages[i]
      )]]),
      type = 'l'
    )
  } else {
    lines(
      as.numeric(s_multiple_age$timestep),
      as.numeric(s_multiple_age[[paste0(
        'p_detect_',
        p_multiple_age$prevalence_rendering_min_ages[i],
        '_',
        p_multiple_age$prevalence_rendering_max_ages[i]
      )]])
    )
  }
}
dev.off()

jpeg('multiple_inc.jpg')
for (i in c(1, 50, 100)) {
  if (i == 1) {
    plot(
      as.numeric(s_multiple_age$timestep),
      as.numeric(s_multiple_age[[paste0(
        'p_inc_clinical_',
        p_multiple_age$prevalence_rendering_min_ages[i],
        '_',
        p_multiple_age$prevalence_rendering_max_ages[i]
      )]]),
      type = 'l'
    )
  } else {
    lines(
      as.numeric(s_multiple_age$timestep),
      as.numeric(s_multiple_age[[paste0(
        'p_inc_clinical_',
        p_multiple_age$prevalence_rendering_min_ages[i],
        '_',
        p_multiple_age$prevalence_rendering_max_ages[i]
      )]])
    )
  }
}
dev.off()

Performance

This outputs the following (6x speedup)

   user  system elapsed
  5.492   0.000   5.458
   user  system elapsed
 14.934   0.000  14.940
null device
          1
null device
          1
   user  system elapsed
 91.076   0.000  91.095
null device
          1
null device
          1

TODO

  • Resolve minor differences in p_detect outputs
  • Implement microbenchmarks to better measure the improvements
  • Better validation on grid parameterisation

@lmhaile
Copy link
Contributor

lmhaile commented Jan 25, 2024

Hi Giovanni!

Here is a snippet of test code. It seems like I can observe the speed up with smaller populations (IE 10k), but do not observe a speed-up with larger populations (50k example shown below). This is a relatively long model run (116 years), so that may be part of it?

Using the progress bar functionality as a quick runtime estimate, but open to suggestions! Sending the filepath over via Teams.

site<- readRDS('site_file_example.rds')

params <- site::site_parameters(
  interventions = site$interventions,
  demography = site$demography,
  vectors = site$vectors,
  seasonality = site$seasonality,
  eir = site$eir$eir[1],
  burnin = 15,
  overrides = list(human_population = 50000)
)

# quick profiling
params$progress_bar <- TRUE

# check estimated runtime for default :estimate 35 min
malariasimulation::run_simulation(timesteps = params$timesteps,
                                  parameters = params)


# comparator for single year age groups: 1 hour
params$clinical_incidence_rendering_min_ages = 0:99 * 365
params$clinical_incidence_rendering_max_ages = 1:100 * 365 - 1
params$severe_incidence_rendering_min_ages =  0:99 * 365
params$severe_incidence_rendering_max_ages = 1:100 * 365 - 1
params$age_group_rendering_min_ages =  0:99 * 365
params$age_group_rendering_max_ages = 1:100 * 365 - 1

malariasimulation::run_simulation(timesteps = params$timesteps,
                                  parameters = params)



# parameter grid example: estimate 1 hour
params$clinical_incidence_rendering_min_ages = numeric(0)
params$clinical_incidence_rendering_max_ages = numeric(0)
params$severe_incidence_rendering_min_ages = numeric(0)
params$severe_incidence_rendering_max_ages = numeric(0)
params$age_group_rendering_min_ages = numeric(0)
params$age_group_rendering_max_ages = numeric(0)


p_grid <- params
p_grid$render_grid <- c('n_inc_clinical_', 'n_inc_sev_')
malariasimulation::run_simulation(timesteps = p_grid$timesteps,
                                  parameters = p_grid)


giovannic added 3 commits May 30, 2024 12:12
 * Tests for grid counting
 * Output n_inc, n_detect and n for 0-100
 * parameterise grid outputs with string vector
 * fix incidence grid rendering for p_ stats
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants