forked from paul-buerkner/brms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
86 lines (86 loc) · 2.6 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
Package: brms
Encoding: UTF-8
Type: Package
Title: Bayesian Regression Models using 'Stan'
Version: 2.14.11
Date: 2021-02-06
Authors@R:
c(person("Paul-Christian", "Bürkner", email = "[email protected]",
role = c("aut", "cre")),
person("Jonah", "Gabry", role = c("ctb")),
person("Sebastian", "Weber", role = c("ctb")),
person("Andrew", "Johnson", role = c("ctb")),
person("Martin", "Modrak", role = c("ctb")))
Depends:
R (>= 3.5.0),
Rcpp (>= 0.12.0),
methods
Imports:
rstan (>= 2.19.2),
ggplot2 (>= 2.0.0),
loo (>= 2.3.1),
Matrix (>= 1.1.1),
mgcv (>= 1.8-13),
rstantools (>= 2.1.1),
bayesplot (>= 1.5.0),
shinystan (>= 2.4.0),
projpred (>= 2.0.0),
bridgesampling (>= 0.3-0),
glue (>= 1.3.0),
future (>= 1.19.0),
matrixStats,
nleqslv,
nlme,
coda,
abind,
stats,
utils,
parallel,
grDevices,
backports
Suggests:
testthat (>= 0.9.1),
emmeans (>= 1.4.2),
cmdstanr (>= 0.1.3),
RWiener,
rtdists,
mice,
spdep,
mnormt,
lme4,
MCMCglmm,
splines2,
ape,
arm,
statmod,
digest,
diffobj,
R.rsp,
knitr,
rmarkdown
Description: Fit Bayesian generalized (non-)linear multivariate multilevel models
using 'Stan' for full Bayesian inference. A wide range of distributions
and link functions are supported, allowing users to fit -- among others --
linear, robust linear, count data, survival, response times, ordinal,
zero-inflated, hurdle, and even self-defined mixture models all in a
multilevel context. Further modeling options include non-linear and
smooth terms, auto-correlation structures, censored data, meta-analytic
standard errors, and quite a few more. In addition, all parameters of the
response distribution can be predicted in order to perform distributional
regression. Prior specifications are flexible and explicitly encourage
users to apply prior distributions that actually reflect their beliefs.
Model fit can easily be assessed and compared with posterior predictive
checks and leave-one-out cross-validation. References: Bürkner (2017)
<doi:10.18637/jss.v080.i01>; Bürkner (2018) <doi:10.32614/RJ-2018-017>;
Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>.
LazyData: true
NeedsCompilation: no
License: GPL-2
URL: https://github.com/paul-buerkner/brms, https://discourse.mc-stan.org/
BugReports: https://github.com/paul-buerkner/brms/issues
Additional_repositories:
https://mc-stan.org/r-packages/
VignetteBuilder:
knitr,
R.rsp
RoxygenNote: 7.1.1