Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

unpack: use lazy alloc to avoid large array/map OOM #41

Open
wants to merge 1 commit into
base: master
Choose a base branch
from

Conversation

Etsukata
Copy link

@Etsukata Etsukata commented Apr 8, 2019

Currently, unpacking large array-32 can easily leads to OOM.
For example, the following one-liner code tries to allocate more than 30
GB but failed with ENOMEM.

$ strace perl -MData::MessagePack -e 'Data::MessagePack->unpack("\xdd\xffAAA");' 2>&1 | grep ENOMEM
mmap(NULL, 34259734528, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = -1 ENOMEM (Cannot allocate memory)
mmap(NULL, 34259865600, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = -1 ENOMEM (Cannot allocate memory)

This means that if an user tries to unpack untrusted msgpack-encoded input,
it can lead to DoS due to OOM (Of course we shouldn't unpack untrusted data
without any validation).

This patch re-introduces lazy allocation to unpack large array/map to avoid OOM.

In comparison with pre-allocation, lazy allocation can slow down unpacking speed.
To reduce the slow-down impact, this patch uses MIN(n, 4096) tuning
based on the following benchmarks.

=== Benchmarks ===

The following script simply compares speeds of unpacking array/map data
at each size.

  • bench.pl
use strict;
use warnings;

use Benchmark qw(:all);
use Data::MessagePack;

my %data = ();
my %bench_a = ();
my %bench_h = ();
for (my $i = 1; $i < 15; $i++) {
    my $n = 2 ** $i;
    $data{"array_$n"} = Data::MessagePack->pack([1..$n]);
    my %h = map { $_ => $_ } (1..$n);
    $data{"hash_$n"} = Data::MessagePack->pack(\%h);

    $bench_a{"array_$n"} = sub { Data::MessagePack->unpack($data{"array_$n"}) };
    $bench_h{"hash_$n"} = sub { Data::MessagePack->unpack($data{"hash_$n"}) };
}

cmpthese(-1, \%bench_a);
cmpthese(-1, \%bench_h);

As for unpacking array, we compare these 3 patters to understand why
we need MIN(n, 4096) tuning.

    1. Current implementation
    1. No av_extend()
    1. MIN(n, 4096)

Results:

    1. Current implementation
                 Rate array_16384 array_8192 array_4096 array_2048 array_1024 array_512 array_256 array_128 array_64 array_32 array_16 array_8 array_4 array_2
array_16384    2017/s          --       -50%       -75%       -88%       -94%      -97%      -99%      -99%    -100%    -100%    -100%   -100%   -100%   -100%
array_8192     4035/s        100%         --       -50%       -76%       -88%      -94%      -97%      -99%     -99%    -100%    -100%   -100%   -100%   -100%
array_4096     8145/s        304%       102%         --       -51%       -76%      -88%      -94%      -97%     -99%     -99%     -99%   -100%   -100%   -100%
array_2048    16748/s        730%       315%       106%         --       -51%      -75%      -88%      -94%     -97%     -98%     -99%    -99%    -99%    -99%
array_1024    34132/s       1592%       746%       319%       104%         --      -49%      -76%      -88%     -94%     -96%     -98%    -98%    -99%    -99%
array_512     66369/s       3190%      1545%       715%       296%        94%        --      -53%      -76%     -88%     -93%     -95%    -97%    -97%    -98%
array_256    142175/s       6948%      3423%      1646%       749%       317%      114%        --      -49%     -74%     -85%     -90%    -93%    -94%    -95%
array_128    281097/s      13836%      6866%      3351%      1578%       724%      324%       98%        --     -49%     -70%     -80%    -86%    -89%    -90%
array_64     546133/s      26975%     13434%      6606%      3161%      1500%      723%      284%       94%       --     -41%     -61%    -72%    -78%    -81%
array_32     927395/s      45876%     22883%     11287%      5437%      2617%     1297%      552%      230%      70%       --     -34%    -52%    -63%    -67%
array_16    1406495/s      69628%     34756%     17169%      8298%      4021%     2019%      889%      400%     158%      52%       --    -28%    -44%    -50%
array_8     1946613/s      96405%     48142%     23801%     11523%      5603%     2833%     1269%      593%     256%     110%      38%      --    -22%    -31%
array_4     2496610/s     123671%     61772%     30554%     14807%      7214%     3662%     1656%      788%     357%     169%      78%     28%      --    -12%
array_2     2840570/s     140723%     70296%     34777%     16861%      8222%     4180%     1898%      911%     420%     206%     102%     46%     14%      --
    1. No av_extend()
                 Rate array_16384 array_8192 array_4096 array_2048 array_1024 array_512 array_256 array_128 array_64 array_32 array_16 array_8 array_4 array_2
array_16384    1969/s          --       -50%       -74%       -87%       -93%      -96%      -98%      -99%     -99%    -100%    -100%   -100%   -100%   -100%
array_8192     3976/s        102%         --       -48%       -73%       -86%      -93%      -96%      -98%     -99%     -99%    -100%   -100%   -100%   -100%
array_4096     7657/s        289%        93%         --       -48%       -72%      -86%      -92%      -96%     -98%     -99%     -99%   -100%   -100%   -100%
array_2048    14769/s        650%       271%        93%         --       -47%      -74%      -85%      -92%     -96%     -97%     -98%    -99%    -99%    -99%
array_1024    27675/s       1306%       596%       261%        87%         --      -51%      -72%      -84%     -92%     -95%     -97%    -98%    -99%    -99%
array_512     56220/s       2756%      1314%       634%       281%       103%        --      -43%      -68%     -83%     -90%     -94%    -96%    -98%    -98%
array_256     98869/s       4922%      2387%      1191%       569%       257%       76%        --      -44%     -71%     -82%     -89%    -94%    -96%    -96%
array_128    177535/s       8918%      4365%      2218%      1102%       542%      216%       80%        --     -47%     -68%     -81%    -88%    -93%    -94%
array_64     335344/s      16935%      8334%      4279%      2171%      1112%      496%      239%       89%       --     -40%     -63%    -78%    -86%    -88%
array_32     563577/s      28529%     14075%      7260%      3716%      1936%      902%      470%      217%      68%       --     -39%    -63%    -77%    -80%
array_16     918728/s      46570%     23007%     11898%      6121%      3220%     1534%      829%      417%     174%      63%       --    -40%    -63%    -67%
array_8     1542023/s      78232%     38684%     20038%     10341%      5472%     2643%     1460%      769%     360%     174%      68%      --    -38%    -45%
array_4     2479740/s     125866%     62268%     32284%     16690%      8860%     4311%     2408%     1297%     639%     340%     170%     61%      --    -12%
array_2     2812991/s     142795%     70650%     36636%     18947%     10064%     4904%     2745%     1484%     739%     399%     206%     82%     13%      --
    1. MIN(n, 4096)
                 Rate array_16384 array_8192 array_4096 array_2048 array_1024 array_512 array_256 array_128 array_64 array_32 array_16 array_8 array_4 array_2
array_16384    2017/s          --       -50%       -76%       -88%       -94%      -97%      -99%      -99%    -100%    -100%    -100%   -100%   -100%   -100%
array_8192     4073/s        102%         --       -51%       -76%       -88%      -94%      -97%      -99%     -99%    -100%    -100%   -100%   -100%   -100%
array_4096     8296/s        311%       104%         --       -51%       -76%      -88%      -94%      -97%     -98%     -99%     -99%   -100%   -100%   -100%
array_2048    16906/s        738%       315%       104%         --       -51%      -75%      -88%      -94%     -97%     -98%     -99%    -99%    -99%    -99%
array_1024    34461/s       1608%       746%       315%       104%         --      -50%      -76%      -88%     -94%     -96%     -98%    -98%    -99%    -99%
array_512     68267/s       3284%      1576%       723%       304%        98%        --      -52%      -77%     -87%     -93%     -95%    -97%    -97%    -98%
array_256    143359/s       7007%      3420%      1628%       748%       316%      110%        --      -51%     -74%     -85%     -90%    -93%    -94%    -95%
array_128    295080/s      14529%      7145%      3457%      1645%       756%      332%      106%        --     -46%     -68%     -79%    -85%    -88%    -90%
array_64     546132/s      26975%     13310%      6483%      3130%      1485%      700%      281%       85%       --     -41%     -61%    -73%    -78%    -81%
array_32     927395/s      45876%     22671%     11078%      5386%      2591%     1258%      547%      214%      70%       --     -34%    -53%    -62%    -67%
array_16    1406495/s      69628%     34434%     16853%      8220%      3981%     1960%      881%      377%     158%      52%       --    -29%    -43%    -50%
array_8     1989485/s      98530%     48749%     23880%     11668%      5673%     2814%     1288%      574%     264%     115%      41%      --    -19%    -30%
array_4     2457599/s     121737%     60243%     29523%     14437%      7032%     3500%     1614%      733%     350%     165%      75%     24%      --    -13%
array_2     2840570/s     140723%     69646%     34139%     16702%      8143%     4061%     1881%      863%     420%     206%     102%     43%     16%      --

We can see just removing av_extend() (pattern 2.) affects unpacking
array speed especially when the number of elements are 128 (40 %
slowdown).
But MIN(n, 4096) (pattern 3.) does not show remarkable side effects.

As for unpacking map, the following benchmark results show as the number
of elements in hash grows, the unpacking speed goes down.
To mitigate the overhead of lazy allocation, this patch adds
MIN(n, 65536) tuning, which will not affect anything in usual usage
, assuming we do not usually unpack so large map.

    1. Current implementation
                Rate hash_16384 hash_8192 hash_4096 hash_2048 hash_1024 hash_512 hash_256 hash_128 hash_64 hash_32 hash_16 hash_8 hash_4 hash_2
hash_16384     221/s         --      -50%      -75%      -88%      -94%     -97%     -99%     -99%   -100%   -100%   -100%  -100%  -100%  -100%
hash_8192      445/s       102%        --      -50%      -77%      -89%     -95%     -97%     -99%    -99%   -100%   -100%  -100%  -100%  -100%
hash_4096      898/s       307%      102%        --      -53%      -77%     -89%     -95%     -97%    -99%    -99%   -100%  -100%  -100%  -100%
hash_2048     1914/s       768%      330%      113%        --      -52%     -77%     -89%     -95%    -97%    -99%    -99%  -100%  -100%  -100%
hash_1024     3965/s      1698%      791%      341%      107%        --     -52%     -77%     -89%    -94%    -98%    -99%   -99%  -100%  -100%
hash_512      8270/s      3650%     1759%      821%      332%      109%       --     -51%     -77%    -88%    -95%    -97%   -99%   -99%   -99%
hash_256     16906/s      7567%     3700%     1782%      783%      326%     104%       --     -52%    -76%    -90%    -94%   -97%   -98%   -99%
hash_128     35544/s     16019%     7890%     3857%     1757%      797%     330%     110%       --    -50%    -78%    -88%   -94%   -96%   -98%
hash_64      71739/s     32433%    16027%     7886%     3648%     1709%     767%     324%     102%      --    -56%    -76%   -87%   -92%   -95%
hash_32     162293/s     73498%    36385%    17968%     8380%     3994%    1862%     860%     357%    126%      --    -46%   -71%   -83%   -89%
hash_16     297890/s    134990%    66868%    33063%    15465%     7414%    3502%    1662%     738%    315%     84%      --   -46%   -68%   -80%
hash_8      551384/s    249946%   123854%    61283%    28710%    13808%    6567%    3162%    1451%    669%    240%     85%     --   -42%   -64%
hash_4      945230/s    428551%   212394%   105129%    49288%    23742%   11330%    5491%    2559%   1218%    482%    217%    71%     --   -38%
hash_2     1527475/s    692592%   343286%   169948%    79710%    38428%   18370%    8935%    4197%   2029%    841%    413%   177%    62%     --
    1. No hv_ksplit()
                Rate hash_16384 hash_8192 hash_4096 hash_2048 hash_1024 hash_512 hash_256 hash_128 hash_64 hash_32 hash_16 hash_8 hash_4 hash_2
hash_16384     195/s         --      -51%      -76%      -88%      -94%     -97%     -99%     -99%   -100%   -100%   -100%  -100%  -100%  -100%
hash_8192      403/s       106%        --      -51%      -75%      -88%     -94%     -97%     -99%    -99%   -100%   -100%  -100%  -100%  -100%
hash_4096      814/s       317%      102%        --      -50%      -76%     -88%     -94%     -97%    -99%    -99%   -100%  -100%  -100%  -100%
hash_2048     1643/s       741%      308%      102%        --      -52%     -76%     -89%     -95%    -98%    -99%    -99%  -100%  -100%  -100%
hash_1024     3412/s      1647%      747%      319%      108%        --     -50%     -76%     -89%    -95%    -98%    -99%   -99%  -100%  -100%
hash_512      6796/s      3379%     1587%      735%      314%       99%       --     -53%     -78%    -90%    -95%    -98%   -99%   -99%  -100%
hash_256     14490/s      7318%     3498%     1681%      782%      325%     113%       --     -54%    -79%    -90%    -95%   -97%   -98%   -99%
hash_128     31508/s     16031%     7724%     3772%     1818%      823%     364%     117%       --    -55%    -78%    -88%   -94%   -97%   -98%
hash_64      69818/s     35644%    17237%     8481%     4149%     1946%     927%     382%     122%      --    -50%    -74%   -87%   -93%   -95%
hash_32     140894/s     72032%    34887%    17217%     8475%     4029%    1973%     872%     347%    102%      --    -48%   -73%   -85%   -90%
hash_16     273066/s    139699%    67708%    33461%    16519%     7902%    3918%    1785%     767%    291%     94%      --   -48%   -71%   -81%
hash_8      524088/s    268213%   130043%    64313%    31796%    15258%    7612%    3517%    1563%    651%    272%     92%     --   -45%   -64%
hash_4      945230/s    483821%   234621%   116073%    57427%    27600%   13809%    6423%    2900%   1254%    571%    246%    80%     --   -34%
hash_2     1442616/s    738464%   358134%   177205%    87697%    42176%   21129%    9856%    4479%   1966%    924%    428%   175%    53%     --

Ref:

Currently, unpacking large array-32 can easily leads to OOM.
For example, the following one-liner code tries to allocate more than 30
GB but failed with ENOMEM.

```
$ strace perl -MData::MessagePack -e 'Data::MessagePack->unpack("\xdd\xffAAA");' 2>&1 | grep ENOMEM
mmap(NULL, 34259734528, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = -1 ENOMEM (Cannot allocate memory)
mmap(NULL, 34259865600, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = -1 ENOMEM (Cannot allocate memory)
```

This means that if an user tries to unpack untrusted msgpack-encoded input,
it can lead to DoS due to OOM (Of course we shouldn't unpack untrusted data
without any validation).

This patch re-introduces lazy allocation to unpack large array/map to avoid OOM.

In comparison with pre-allocation, lazy allocation can slow down unpacking speed.
To reduce the slow-down impact, this patch uses `MIN(n, 4096)` tuning
based on the following benchmarks.

=== Benchmarks ===

The following script simply compares speeds of unpacking array/map data
at each size.

- bench.pl
```
use strict;
use warnings;

use Benchmark qw(:all);
use Data::MessagePack;

my %data = ();
my %bench_a = ();
my %bench_h = ();
for (my $i = 1; $i < 15; $i++) {
    my $n = 2 ** $i;
    $data{"array_$n"} = Data::MessagePack->pack([1..$n]);
    my %h = map { $_ => $_ } (1..$n);
    $data{"hash_$n"} = Data::MessagePack->pack(\%h);

    $bench_a{"array_$n"} = sub { Data::MessagePack->unpack($data{"array_$n"}) };
    $bench_h{"hash_$n"} = sub { Data::MessagePack->unpack($data{"hash_$n"}) };
}

cmpthese(-1, \%bench_a);
cmpthese(-1, \%bench_h);
```

As for unpacking array, we compare these 3 patters to understand why
we need `MIN(n, 4096)` tuning.

- 1. Current implementation
- 2. No av_extend()
- 3. MIN(n, 4096)

Results:
- 1. Current implementation
```
                 Rate array_16384 array_8192 array_4096 array_2048 array_1024 array_512 array_256 array_128 array_64 array_32 array_16 array_8 array_4 array_2
array_16384    2017/s          --       -50%       -75%       -88%       -94%      -97%      -99%      -99%    -100%    -100%    -100%   -100%   -100%   -100%
array_8192     4035/s        100%         --       -50%       -76%       -88%      -94%      -97%      -99%     -99%    -100%    -100%   -100%   -100%   -100%
array_4096     8145/s        304%       102%         --       -51%       -76%      -88%      -94%      -97%     -99%     -99%     -99%   -100%   -100%   -100%
array_2048    16748/s        730%       315%       106%         --       -51%      -75%      -88%      -94%     -97%     -98%     -99%    -99%    -99%    -99%
array_1024    34132/s       1592%       746%       319%       104%         --      -49%      -76%      -88%     -94%     -96%     -98%    -98%    -99%    -99%
array_512     66369/s       3190%      1545%       715%       296%        94%        --      -53%      -76%     -88%     -93%     -95%    -97%    -97%    -98%
array_256    142175/s       6948%      3423%      1646%       749%       317%      114%        --      -49%     -74%     -85%     -90%    -93%    -94%    -95%
array_128    281097/s      13836%      6866%      3351%      1578%       724%      324%       98%        --     -49%     -70%     -80%    -86%    -89%    -90%
array_64     546133/s      26975%     13434%      6606%      3161%      1500%      723%      284%       94%       --     -41%     -61%    -72%    -78%    -81%
array_32     927395/s      45876%     22883%     11287%      5437%      2617%     1297%      552%      230%      70%       --     -34%    -52%    -63%    -67%
array_16    1406495/s      69628%     34756%     17169%      8298%      4021%     2019%      889%      400%     158%      52%       --    -28%    -44%    -50%
array_8     1946613/s      96405%     48142%     23801%     11523%      5603%     2833%     1269%      593%     256%     110%      38%      --    -22%    -31%
array_4     2496610/s     123671%     61772%     30554%     14807%      7214%     3662%     1656%      788%     357%     169%      78%     28%      --    -12%
array_2     2840570/s     140723%     70296%     34777%     16861%      8222%     4180%     1898%      911%     420%     206%     102%     46%     14%      --
```

- 2. No av_extend()
```
                 Rate array_16384 array_8192 array_4096 array_2048 array_1024 array_512 array_256 array_128 array_64 array_32 array_16 array_8 array_4 array_2
array_16384    1969/s          --       -50%       -74%       -87%       -93%      -96%      -98%      -99%     -99%    -100%    -100%   -100%   -100%   -100%
array_8192     3976/s        102%         --       -48%       -73%       -86%      -93%      -96%      -98%     -99%     -99%    -100%   -100%   -100%   -100%
array_4096     7657/s        289%        93%         --       -48%       -72%      -86%      -92%      -96%     -98%     -99%     -99%   -100%   -100%   -100%
array_2048    14769/s        650%       271%        93%         --       -47%      -74%      -85%      -92%     -96%     -97%     -98%    -99%    -99%    -99%
array_1024    27675/s       1306%       596%       261%        87%         --      -51%      -72%      -84%     -92%     -95%     -97%    -98%    -99%    -99%
array_512     56220/s       2756%      1314%       634%       281%       103%        --      -43%      -68%     -83%     -90%     -94%    -96%    -98%    -98%
array_256     98869/s       4922%      2387%      1191%       569%       257%       76%        --      -44%     -71%     -82%     -89%    -94%    -96%    -96%
array_128    177535/s       8918%      4365%      2218%      1102%       542%      216%       80%        --     -47%     -68%     -81%    -88%    -93%    -94%
array_64     335344/s      16935%      8334%      4279%      2171%      1112%      496%      239%       89%       --     -40%     -63%    -78%    -86%    -88%
array_32     563577/s      28529%     14075%      7260%      3716%      1936%      902%      470%      217%      68%       --     -39%    -63%    -77%    -80%
array_16     918728/s      46570%     23007%     11898%      6121%      3220%     1534%      829%      417%     174%      63%       --    -40%    -63%    -67%
array_8     1542023/s      78232%     38684%     20038%     10341%      5472%     2643%     1460%      769%     360%     174%      68%      --    -38%    -45%
array_4     2479740/s     125866%     62268%     32284%     16690%      8860%     4311%     2408%     1297%     639%     340%     170%     61%      --    -12%
array_2     2812991/s     142795%     70650%     36636%     18947%     10064%     4904%     2745%     1484%     739%     399%     206%     82%     13%      --
```

- 3. MIN(n, 4096)
```
                 Rate array_16384 array_8192 array_4096 array_2048 array_1024 array_512 array_256 array_128 array_64 array_32 array_16 array_8 array_4 array_2
array_16384    2017/s          --       -50%       -76%       -88%       -94%      -97%      -99%      -99%    -100%    -100%    -100%   -100%   -100%   -100%
array_8192     4073/s        102%         --       -51%       -76%       -88%      -94%      -97%      -99%     -99%    -100%    -100%   -100%   -100%   -100%
array_4096     8296/s        311%       104%         --       -51%       -76%      -88%      -94%      -97%     -98%     -99%     -99%   -100%   -100%   -100%
array_2048    16906/s        738%       315%       104%         --       -51%      -75%      -88%      -94%     -97%     -98%     -99%    -99%    -99%    -99%
array_1024    34461/s       1608%       746%       315%       104%         --      -50%      -76%      -88%     -94%     -96%     -98%    -98%    -99%    -99%
array_512     68267/s       3284%      1576%       723%       304%        98%        --      -52%      -77%     -87%     -93%     -95%    -97%    -97%    -98%
array_256    143359/s       7007%      3420%      1628%       748%       316%      110%        --      -51%     -74%     -85%     -90%    -93%    -94%    -95%
array_128    295080/s      14529%      7145%      3457%      1645%       756%      332%      106%        --     -46%     -68%     -79%    -85%    -88%    -90%
array_64     546132/s      26975%     13310%      6483%      3130%      1485%      700%      281%       85%       --     -41%     -61%    -73%    -78%    -81%
array_32     927395/s      45876%     22671%     11078%      5386%      2591%     1258%      547%      214%      70%       --     -34%    -53%    -62%    -67%
array_16    1406495/s      69628%     34434%     16853%      8220%      3981%     1960%      881%      377%     158%      52%       --    -29%    -43%    -50%
array_8     1989485/s      98530%     48749%     23880%     11668%      5673%     2814%     1288%      574%     264%     115%      41%      --    -19%    -30%
array_4     2457599/s     121737%     60243%     29523%     14437%      7032%     3500%     1614%      733%     350%     165%      75%     24%      --    -13%
array_2     2840570/s     140723%     69646%     34139%     16702%      8143%     4061%     1881%      863%     420%     206%     102%     43%     16%      --
```

We can see just removing av_extend() (pattern 2.) affects unpacking
array speed especially when the number of elements are 128 (40 %
slowdown).
But MIN(n, 4096) (pattern 3.) does not show remarkable side effects.

As for unpacking map, the following benchmark results show as the number
of elements in hash grows, the unpacking speed goes down.
To mitigate the overhead of lazy allocation, this patch adds
MIN(n, 65536) tuning, which will not affect anything in usual usage
, assuming we do not usually unpack so large map.

- 1. Current implementation
```
                Rate hash_16384 hash_8192 hash_4096 hash_2048 hash_1024 hash_512 hash_256 hash_128 hash_64 hash_32 hash_16 hash_8 hash_4 hash_2
hash_16384     221/s         --      -50%      -75%      -88%      -94%     -97%     -99%     -99%   -100%   -100%   -100%  -100%  -100%  -100%
hash_8192      445/s       102%        --      -50%      -77%      -89%     -95%     -97%     -99%    -99%   -100%   -100%  -100%  -100%  -100%
hash_4096      898/s       307%      102%        --      -53%      -77%     -89%     -95%     -97%    -99%    -99%   -100%  -100%  -100%  -100%
hash_2048     1914/s       768%      330%      113%        --      -52%     -77%     -89%     -95%    -97%    -99%    -99%  -100%  -100%  -100%
hash_1024     3965/s      1698%      791%      341%      107%        --     -52%     -77%     -89%    -94%    -98%    -99%   -99%  -100%  -100%
hash_512      8270/s      3650%     1759%      821%      332%      109%       --     -51%     -77%    -88%    -95%    -97%   -99%   -99%   -99%
hash_256     16906/s      7567%     3700%     1782%      783%      326%     104%       --     -52%    -76%    -90%    -94%   -97%   -98%   -99%
hash_128     35544/s     16019%     7890%     3857%     1757%      797%     330%     110%       --    -50%    -78%    -88%   -94%   -96%   -98%
hash_64      71739/s     32433%    16027%     7886%     3648%     1709%     767%     324%     102%      --    -56%    -76%   -87%   -92%   -95%
hash_32     162293/s     73498%    36385%    17968%     8380%     3994%    1862%     860%     357%    126%      --    -46%   -71%   -83%   -89%
hash_16     297890/s    134990%    66868%    33063%    15465%     7414%    3502%    1662%     738%    315%     84%      --   -46%   -68%   -80%
hash_8      551384/s    249946%   123854%    61283%    28710%    13808%    6567%    3162%    1451%    669%    240%     85%     --   -42%   -64%
hash_4      945230/s    428551%   212394%   105129%    49288%    23742%   11330%    5491%    2559%   1218%    482%    217%    71%     --   -38%
hash_2     1527475/s    692592%   343286%   169948%    79710%    38428%   18370%    8935%    4197%   2029%    841%    413%   177%    62%     --
```

- 2. No hv_ksplit()
```
                Rate hash_16384 hash_8192 hash_4096 hash_2048 hash_1024 hash_512 hash_256 hash_128 hash_64 hash_32 hash_16 hash_8 hash_4 hash_2
hash_16384     195/s         --      -51%      -76%      -88%      -94%     -97%     -99%     -99%   -100%   -100%   -100%  -100%  -100%  -100%
hash_8192      403/s       106%        --      -51%      -75%      -88%     -94%     -97%     -99%    -99%   -100%   -100%  -100%  -100%  -100%
hash_4096      814/s       317%      102%        --      -50%      -76%     -88%     -94%     -97%    -99%    -99%   -100%  -100%  -100%  -100%
hash_2048     1643/s       741%      308%      102%        --      -52%     -76%     -89%     -95%    -98%    -99%    -99%  -100%  -100%  -100%
hash_1024     3412/s      1647%      747%      319%      108%        --     -50%     -76%     -89%    -95%    -98%    -99%   -99%  -100%  -100%
hash_512      6796/s      3379%     1587%      735%      314%       99%       --     -53%     -78%    -90%    -95%    -98%   -99%   -99%  -100%
hash_256     14490/s      7318%     3498%     1681%      782%      325%     113%       --     -54%    -79%    -90%    -95%   -97%   -98%   -99%
hash_128     31508/s     16031%     7724%     3772%     1818%      823%     364%     117%       --    -55%    -78%    -88%   -94%   -97%   -98%
hash_64      69818/s     35644%    17237%     8481%     4149%     1946%     927%     382%     122%      --    -50%    -74%   -87%   -93%   -95%
hash_32     140894/s     72032%    34887%    17217%     8475%     4029%    1973%     872%     347%    102%      --    -48%   -73%   -85%   -90%
hash_16     273066/s    139699%    67708%    33461%    16519%     7902%    3918%    1785%     767%    291%     94%      --   -48%   -71%   -81%
hash_8      524088/s    268213%   130043%    64313%    31796%    15258%    7612%    3517%    1563%    651%    272%     92%     --   -45%   -64%
hash_4      945230/s    483821%   234621%   116073%    57427%    27600%   13809%    6423%    2900%   1254%    571%    246%    80%     --   -34%
hash_2     1442616/s    738464%   358134%   177205%    87697%    42176%   21129%    9856%    4479%   1966%    924%    428%   175%    53%     --
```

Ref:
  - similar problem in msgpack-python : msgpack/msgpack-python#97
  - fix : msgpack/msgpack-python#105
@Etsukata
Copy link
Author

Etsukata commented Jul 8, 2019

if an user tries to unpack untrusted msgpack-encoded input

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant