-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatasetGenerator.py
58 lines (50 loc) · 1.95 KB
/
DatasetGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import numpy as np
from PIL import Image
import torch
from torch.utils.data import Dataset
class DatasetGenerator_train (Dataset):
def __init__ (self, pathImageDirectory, transform,model_name):
self.images_root = os.path.join(pathImageDirectory, 'train_images')
self.filenames = os.listdir(self.images_root)
self.filenames.sort()
self.category=["COVID","NonCOVID"]
self.transform=transform
self.scale=[0.75,0.5,1,1.25]
self.model_name=model_name
def __getitem__(self, index):
choice=int(np.random.randint(0,3,1))
scale=self.scale[choice]
filename = self.filenames[index]
with open(os.path.join(self.images_root,filename), 'rb') as f:
image = Image.open(f).convert('RGB')
_,w,h=np.shape(image)
# image=image.resize((int(w*scale),int(h*scale)))
image = self.transform(image)
category= filename.split("__")[0]
ind=self.category.index(category)
label = torch.zeros(2)
label[ind]=1
return image,label
def __len__(self):
return len(self.filenames)
class DatasetGenerator_test(Dataset):
def __init__(self, pathImageDirectory, transform,model_name):
self.images_root = os.path.join(pathImageDirectory, 'test_images')
self.filenames = os.listdir(self.images_root)
self.filenames.sort()
self.category = ["COVID", "NonCOVID"]
self.transform = transform
self.model_name = model_name
def __getitem__(self, index):
filename = self.filenames[index]
with open(os.path.join(self.images_root, filename), 'rb') as f:
image = Image.open(f).convert('RGB')
image = self.transform(image)
category = filename.split("__")[0]
ind = self.category.index(category)
label = torch.zeros(2)
label[ind] = 1
return image, label
def __len__(self):
return len(self.filenames)