-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathprepare_data.py
49 lines (36 loc) · 1.75 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import sys
import numpy as np
from scipy.misc import imsave
import scipy.ndimage
import pydicom
training_dicom_dir = "./test/a"
training_labels_dir = "./test/b"
training_png_dir = "./Data/Training/Images/Sunnybrook_Part2"
training_png_labels_dir = "./Data/Training/Labels/Sunnybrook_Part2"
for root, dirs, files in os.walk(training_labels_dir):
for file in files:
if file.endswith("-icontour-manual.txt"):
try:
prefix, _ = os.path.split(root)
prefix, _ = os.path.split(prefix)
_, patient = os.path.split(prefix)
file_fn = file.strip("-icontour-manual.txt") + ".dcm"
print(file_fn)
print(patient)
dcm = pydicom.read_file(os.path.join(training_dicom_dir, patient, file_fn))
print(dcm.pixel_array.shape)
img = np.concatenate((dcm.pixel_array[...,None], dcm.pixel_array[...,None], dcm.pixel_array[...,None]), axis=2)
labels = np.zeros_like(dcm.pixel_array)
print(img.shape)
print(labels.shape)
with open(os.path.join(root, file)) as labels_f:
for line in labels_f:
x, y = line.split(" ")
labels[int(float(y)), int(float(x))] = 128
labels = scipy.ndimage.binary_fill_holes(labels)
img_labels = np.concatenate((labels[..., None], labels[..., None], labels[..., None]), axis=2)
imsave(os.path.join(training_png_dir, patient + "-" + file_fn + ".png"), img)
imsave(os.path.join(training_png_labels_dir, patient + "-" + file_fn + ".png"), img_labels)
except Exception as e:
print(e)