-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
38 lines (30 loc) · 1.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from flask import Flask, request, render_template
import numpy as np
import pickle
import warnings
warnings.filterwarnings('ignore')
from feature import FeatureExtraction
file = open("model.pkl", "rb")
gbc = pickle.load(file)
app = Flask(__name__)
@app.route('/', methods=['GET', 'POST'])
def index():
result = None
result_class = None
url = None
if request.method == 'POST':
url = request.form['url']
obj = FeatureExtraction(url)
x = np.array(obj.getFeaturesList()).reshape(1, 30)
y_pred = gbc.predict(x)[0]
y_pro_phishing = gbc.predict_proba(x)[0, 0]
y_pro_non_phishing = gbc.predict_proba(x)[0, 1]
if y_pred == 1:
result = "It is {0:.2f}% safe to go".format(y_pro_non_phishing * 100)
result_class = "safe"
else:
result = "It is {0:.2f}% phishing".format(y_pro_phishing * 100)
result_class = "phishing"
return render_template('index.html', result=result, url=url, result_class=result_class)
if __name__ == '__main__':
app.run(debug=True)