forked from wliu88/AttentivePathRanking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_fb15k237.py
162 lines (137 loc) · 8.66 KB
/
demo_fb15k237.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
# import and build cython
import pyximport
pyximport.install()
from main.data.MIDFreebase15kReader import MIDFreebase15kReader
from main.data.TypedRelationInstances import TypedRelationInstances
from main.data.Vocabs import Vocabs
from main.graphs.AdjacencyGraph import AdjacencyGraph
from main.features.PathExtractor import PathExtractor
from main.data.Split import Split
from main.features.PathReader import PathReader
from main.experiments.CVSMDriver import CVSMDriver
from main.experiments.PRADriver import PRADriver
from main.playground.make_data_format import process_paths
from main.playground.model2.CompositionalVectorAlgorithm import CompositionalVectorAlgorithm
# This script is used to run FB15k237 experiments (only our method) with 1:10 postive to negative ratio.
if __name__ == "__main__":
# location of Das et al.'s repo
CVSM_RUN_DIR = "/home/weiyu/Research/Path_Baselines/CVSM/ChainsofReasoning"
# location of Matt's PRA scala repo
PRA_RUN_DIR = "/home/weiyu/Research/Path_Baselines/SFE/pra_scala"
DATASET_NAME = "fb15k237"
DATASET_FOLDER = os.path.join("data", DATASET_NAME)
PRA_TEMPLATE_DIR = "pra_templates"
FREEBASE_DIR = DATASET_FOLDER
DOMAIN_FILENAME = os.path.join(DATASET_FOLDER, "domains.tsv")
RANGE_FILENAME = os.path.join(DATASET_FOLDER, "ranges.tsv")
EDGES_FILENAME = os.path.join(DATASET_FOLDER, "edges.txt")
PRA_DIR = os.path.join(DATASET_FOLDER, "pra")
SPLIT_DIR = os.path.join(DATASET_FOLDER, "split")
CPR_PATH_DIR = os.path.join(DATASET_FOLDER, "cpr_paths")
WORD2VEC_FILENAME = "data/word2vec/knowledge-vectors-skipgram1000.bin"
ENTITY2VEC_FILENAME = os.path.join(DATASET_FOLDER, "synonym2vec.pkl")
# ToDo: modify code to have cvsm_ret, cvsm_r, cvsm_rt, cvsm_re folders (r: relation, t: type, e: entity)
CVSM_DATA_DIR = os.path.join(DATASET_FOLDER, "cvsm")
PRA_PATH_DIR = os.path.join(DATASET_FOLDER, "pra_paths")
RELATION_PATH_DIR = os.path.join(DATASET_FOLDER, "relation_paths")
PATH_DIR = os.path.join(DATASET_FOLDER, "paths")
NEW_PATH_DIR = os.path.join(DATASET_FOLDER, "new_paths")
AUGMENT_PATH_DIR = os.path.join(DATASET_FOLDER, "paths_augment")
CVSM_RET_DIR = os.path.join(DATASET_FOLDER, "cvsm_entity")
ENTITY_TYPE2VEC_FILENAME = os.path.join(DATASET_FOLDER, "entity_type2vec.pkl")
run_step = 1
# 1. first run main/data/MIDFreebase15kReader.py to process data and generate necessary files
if run_step == 1:
fb = MIDFreebase15kReader(FREEBASE_DIR,
filter=True,
word2vec_filename=WORD2VEC_FILENAME)
fb.read_data()
fb.write_relation_domain_and_ranges()
fb.write_edges()
# get the dictionary from freebase mids to names
# fb.get_mid_to_name()
# 2. use PRA scala code and code here to create train/test/dev split and negative examples
if run_step == 2:
pra_driver = PRADriver(DATASET_FOLDER, PRA_TEMPLATE_DIR, PRA_RUN_DIR, DATASET_NAME)
pra_driver.prepare_split()
# 3. Extract paths with entities
if run_step == 3:
typed_relation_instances = TypedRelationInstances()
typed_relation_instances.read_domains_and_ranges(DOMAIN_FILENAME, RANGE_FILENAME)
typed_relation_instances.construct_from_labeled_edges(EDGES_FILENAME, entity_name_is_typed=False,
is_labeled=False)
vocabs = Vocabs()
vocabs.build_vocabs(typed_relation_instances)
split = Split()
split.read_splits(SPLIT_DIR, vocabs, entity_name_is_typed=True)
graph = AdjacencyGraph()
graph.build_graph(typed_relation_instances, vocabs)
path_extractor = PathExtractor(max_length=4, include_entity=True, save_dir=PATH_DIR, include_path_len1=True,
max_paths_per_pair=200, multiple_instances_per_pair=False,
max_instances_per_pair=None, paths_sample_method="all_lengths")
path_extractor.extract_paths(graph, split, vocabs)
path_extractor.write_paths(split)
# Note: we can extract path up to 6 but eliminate nodes with large fan-out
# 4. Extract paths statistics
if run_step == 4:
typed_relation_instances = TypedRelationInstances()
typed_relation_instances.read_domains_and_ranges(DOMAIN_FILENAME, RANGE_FILENAME)
typed_relation_instances.construct_from_labeled_edges(EDGES_FILENAME, entity_name_is_typed=False,
is_labeled=False)
vocabs = Vocabs()
vocabs.build_vocabs(typed_relation_instances)
split = Split()
split.read_splits(SPLIT_DIR, vocabs, entity_name_is_typed=True)
path_reader = PathReader(save_dir=PATH_DIR)
path_reader.read_paths(split)
# 5. Process data for running the model
if run_step == 5:
# first convert paths to cvsm format
cvsm_driver = CVSMDriver(FREEBASE_DIR, CVSM_RUN_DIR, dataset="freebase", include_entity=True, has_entity=True,
augment_data=False, include_entity_type=True)
cvsm_driver.setup_cvsm_dir()
# then vectorize cvsm format data
process_paths(input_dir=os.path.join(CVSM_RET_DIR, "data/data_input"),
output_dir=os.path.join(CVSM_RET_DIR, "data/data_output"),
vocab_dir=os.path.join(CVSM_RET_DIR, "data/vocab"),
isOnlyRelation=False,
getOnlyRelation=False,
MAX_POSSIBLE_LENGTH_PATH=8, # the max number of relations in a path + 1
NUM_ENTITY_TYPES_SLOTS=7, # the number of types + 1 (the reason we +1 is to create a meaningless type for all entities)
pre_padding=True)
# 6. test run of the model
# use $tensorboard --logdir runs to see the training progress
if run_step == 6:
cvsm = CompositionalVectorAlgorithm("freebase", CVSM_RET_DIR, None, attention_method="sat", early_stopping_metric="map")
# cvsm.train_and_test()
# Uncomment if need to train only one relation
cvsm.train(os.path.join(CVSM_RET_DIR, "data/data_output/|food|food|nutrients.|food|nutrition_fact|nutrient"))
# 7. test different path pooling methods
if run_step == 7:
cvsm = CompositionalVectorAlgorithm("freebase", CVSM_RET_DIR, None,
pooling_method="lse", attention_method="sat",
early_stopping_metric="map")
cvsm.train_and_test()
cvsm = CompositionalVectorAlgorithm("freebase", CVSM_RET_DIR, None,
pooling_method="avg", attention_method="sat",
early_stopping_metric="map")
cvsm.train_and_test()
cvsm = CompositionalVectorAlgorithm("freebase", CVSM_RET_DIR, None,
pooling_method="max", attention_method="sat",
early_stopping_metric="map")
cvsm.train_and_test()
# 8. visualize type attention
if run_step == 8:
cvsm = CompositionalVectorAlgorithm("freebase", CVSM_RET_DIR, None,
pooling_method="sat", attention_method="sat", early_stopping_metric="map",
visualize=False, calculate_path_attn_stats=False, calculate_type_attn_stats=True,
mid2name_filename="/home/weiyu/Research/ChainsOfReasoningWithAbstractEntities/data/fb15k237/mid2name.pkl",
best_models={'|people|person|profession': {'epoch': 10}, '|award|award_winning_work|awards_won.|award|award_honor|award': {'epoch': 16}, '|tv|tv_program|regular_cast.|tv|regular_tv_appearance|actor': {'epoch': 23}, '|music|record_label|artist': {'epoch': 27}, '|award|award_category|nominees.|award|award_nomination|nominated_for': {'epoch': 15}, '|film|film|production_companies': {'epoch': 24}, '|film|film|genre': {'epoch': 13}, '|sports|sports_position|players.|sports|sports_team_roster|team': {'epoch': 25}, '|food|food|nutrients.|food|nutrition_fact|nutrient': {'epoch': 17}, '|education|educational_institution|students_graduates.|education|education|major_field_of_study': {'epoch': 21}})
cvsm.train_and_test()
# 9. run ablation on type selection
if run_step == 9:
cvsm = CompositionalVectorAlgorithm("freebase", CVSM_RET_DIR, None,
pooling_method="lse", attention_method="specific",
early_stopping_metric="map")
cvsm.train_and_test()