-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtransfer_function.tex
166 lines (144 loc) · 8.08 KB
/
transfer_function.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
\documentclass[12pt]{article}
\usepackage{amssymb,latexsym,amsmath,bm}
\newif\ifpdf
\ifx\pdfoutput\undefined
\pdffalse % we are not running PDFLaTeX
\else
\pdfoutput=1 % we are running PDFLaTeX
\pdftrue
\fi
\ifpdf
\usepackage[pdftex]{graphicx}
\else
\usepackage{graphicx}
\fi
\ifpdf
\DeclareGraphicsExtensions{.pdf, .jpg, .tif}
\else
\DeclareGraphicsExtensions{.eps, .jpg}
\fi
\textwidth = 6.5 in
\textheight = 9 in
\oddsidemargin = 0.0 in
\evensidemargin = 0.0 in
\topmargin = 0.0 in
\headheight = 0.0 in
\headsep = 0.0 in
\parskip = 0.2 in
\parindent = 0.0 in
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\khat}{\hat{\mathbf k}}
\newcommand{\uv}{\mathbf u}
\newcommand{\up}{\mathbf u'}
\newcommand{\w}{\mathbf w}
\newcommand{\grad}{\nabla}
\newcommand{\curlp}{\gradp \times}
\newcommand{\curl}{\grad \times}
\newcommand{\gradp}{\nabla'}
\newcommand{\bk}{\bm{\kappa}}
\newcommand{\kp}{\kappa}
\DeclareMathOperator{\Span}{span}
\title{Transfer function in the Boussinesq equations}
\author{Susan Kurien}
\begin{document}
\section{Preliminaries}
We would like to compute the energy transfer as a function of
wavenumber in the Boussinesq equations which are given by:
\begin{eqnarray}
\frac{\partial}{\partial t}{u}_j + u_i \partial_i u_j + f\epsilon_{j3k}u_k +
\frac{1}{\rho_0}\partial_j p + \delta_{j3}\frac{\tilde\rho}{\rho_0}g\delta_{j3} &=&
\nu \partial_i^2 u_j\label{momentum}\\ \frac{\partial}{\partial t}\tilde\rho+u_i \partial_i \tilde\rho -
bu_3 &=& \gamma \partial_i^2 \tilde \rho \label{density}\\ \partial_i u_i &=& 0,
\label{bous}
\end{eqnarray}
in a cartesian coordinate system with unit vectors ($\hat{\bm{x}_1},
\hat{\bm{x}_2}, \hat{\bm{x}_3}$); where $\bm{u}$ is the velocity, $u_3$ is its (vertical) component along $\hat{\bm{x}_3}$, $p$ is the pressure,
$f=2\Omega$ is the Coriolis parameter, $\Omega$ is the constant
background rotation rate, gravitational accelaration $g$ acts in the
vertical direction $\hat{\bm{x}_3}$, $\nu = \mu/\rho_0$ is the
viscosity and $\gamma$ is the mass diffusivity coefficient. The total
density is $\rho(\bm{x}) = \rho_0 - bx_3 + \tilde\rho(\bm{x})$, where
$\rho_0$ is the constant background, $b$ is also constant and larger
than zero for stable stratification, and $\tilde \rho$ is the density
fluctuation such that $\tilde \rho \ll bw \ll \rho_0$.
Let us derive the energy spectral distribution dynamics first directly
from the fourier representation of the momentum-density equations and
then from the physical space correlation function equations.
\section{Fourier transform of the momentum-density equations}
Let us denote the fourier transform operator by
$\cal{F}_{\bk}$ (using Pope's notation). The fourier transform of a function is denoted by the tilde above the corresponding variable. Term by term the fourier transform of Eq. \ref{momentum} is:
\begin{eqnarray}
{\cal F}_{\bk}\{\partial_t u_j\} &=& \frac{d}{dt} \tilde u_j(\bm{\kappa},t) =
\frac{d}{dt}\sum_{\bm{k}} e^{i\bm{\kappa\cdot x}} u_j(\bm{x},t)\\
{\cal F}_{\bk}\{u_i \partial_i u_j\} &=& \tilde G_j(\bm{\kappa})\\
{\cal F}_{\bk}\{f\epsilon_{j3k}~u_k \} &=& f\epsilon_{j3k}\tilde u_k(\bm{\kappa})\\
{\cal F}_{\bk}\{\frac{1}{\rho_0}\partial_j p\} &=& \frac{-i}{\rho_0} \kappa_j \tilde p \\
{\cal F}_{\bk}\{\frac{\tilde\rho}{\rho_0}g \delta_{j3}\}&=& \frac{g \delta_{j3}}{\rho_0}\tilde{\tilde \rho}\\
{\cal F}_{\bk}\{\nu \partial_i^2 u_j\}& =& -\nu\kappa^2 \tilde u_j
\end{eqnarray}
Hence the fourier representation of the momentum equation is:
\begin{eqnarray}
\frac{d}{dt} \tilde u_j(\bm{\kappa},t) + \tilde G_j(\bm{\kappa}) + f\epsilon_{j3k}\tilde u_k(\bm{\kappa}) - \frac{i}{\rho_0} \kappa_j \tilde p + \delta_{j3}\frac{g\delta_{j3}}{\rho_0}\tilde{\tilde \rho} = -\nu\kappa^2 \tilde u_j
\label{momentum-f}
\end{eqnarray}
Similarly, the density equation and the incompressibility may be written as:
\begin{eqnarray}
\frac{d}{dt} \tilde {\tilde \rho} + \tilde J(\bm{\kappa}) - b \tilde u_3 = \gamma \kappa^2 \tilde {\tilde \rho}\label{density-f}\\
\kappa_i \cdot \tilde u_i \label{incomp-f} = 0
\end{eqnarray}
where ${\cal F}_{\bm{\kappa}}\{u_i \partial_i \tilde\rho\} = \tilde J(\bm{\kappa})$, the $\tilde \tilde$ on the $\rho$ denotes fourier transform of the density fluctuations.
Note that $\tilde G_j(\bm{\kappa})$ and $\tilde J(\bm{\kappa})$ are the fourier
transforms of the non-linear terms and may be simplified to diadic
interactions (see eg. Pope chapter 6 for $\tilde G_j$) but we won't do that here since we
can directly compute the fourier transforms of the entire term.
Next, lets write down the projection operator for the pressure.
Left-multiply Eq. (\ref{momentum-f}) by $\kp_j$ and using Eq. (\ref{incomp-f}):
\begin{eqnarray}
\kp_j\tilde G_j(\bk) &-& f \tilde \omega_3 - \frac{i}{\rho_0} \kp^2 \tilde p +
\frac{g\delta_{j3}}{\rho_0}\kp_3\tilde{\tilde \rho} = 0\nonumber\\
\mbox{that~is,}~~\tilde p &=& -i\frac{\rho_0}{\kp^2}
\Big(\kp_j\tilde G_j(\bk) - f \tilde \omega_3
+ \frac{g\delta_{j3}}{\rho_0}\kp_3\tilde{\tilde \rho}\Big)
\label{k-momentum-f}
\end{eqnarray}
where $\tilde\omega_3=\epsilon_{3jk}\kp_j \tilde u_k(\bk)$ is the
vertical component of the fourier transform of the vorticity. Note the contribution to the pressure from rotation and stratification. Substitute (\ref{k-momentum-f}) back into (\ref{momentum-f}) (keep track of dummy indices!!)..
\begin{eqnarray}
\frac{d}{dt} \tilde u_j(\bm{\kappa},t) + (\delta_{ij}-\frac{\kappa_j \kp_i}{\kp^2}) \tilde G_i + (\delta_{j3} - \frac{\kp_j \kp_3}{\kp^2})\frac{g\delta_{j3}}{\rho_0}\tilde{\tilde \rho} = -\nu\kappa^2 \tilde u_j
\label{momentum-f-elimp}
\end{eqnarray}
THUS: when pressure is eliminated using incompressibility, the rotation terms disappear from the momentum equation.
\subsection{Energy spectrum evolution}
The mean energy in wavenumber $\bk$ is given by:
\begin{equation}
E(\bk) = \langle \tilde{{u}_j}(\bk) \tilde{{u}_j}^*(\bk) \rangle = \langle \tilde{{u}_j}(\bk) \tilde{{u}_j}(-\bk) \rangle= \langle |\tilde{\bm{u}}(\bk)|^2 \rangle
\end{equation}
where $\langle \cdot \rangle$ denotes the average.
So, left-multiply Eq. (\ref{momentum-f-elimp}) by
$\tilde{u_j}^*(\bk)$ and add it to the equation for $\tilde{u_j}^*$
left-multiplied by $\tilde{u_j}$ (the $\bk$ argument is implicit everywhere and the $\delta_{j3}$ for the direction of $g$ will be dropped from now on):
\begin{equation}
\frac{d}{dt} \langle\tilde u_j \tilde{{u}_j}^*\rangle +
\langle \tilde{u_j}^* \tilde G_j + \tilde{u_j} \tilde G_j^*\rangle+ \langle \tilde{u_3}^*\frac{g}{\rho_0}\tilde{\tilde \rho} + \tilde u_3 \frac{g}{\rho_0}
\tilde{\tilde \rho}^*\rangle = -\nu \kp^2 \langle\tilde u_j \tilde u_j^*\rangle
\label{ke}
\end{equation}
The potential energy in wavenumber $\bk$ is obtained by multiplying
(\ref{density-f}) by $\frac{g }{b \rho_0} \tilde{\tilde\rho}^*$ and adding to the equation for
$\frac{g}{b \rho_0}\tilde{\tilde\rho}^*$ multiplied by $\tilde{\tilde\rho}$:
\begin{eqnarray}
\frac{d}{dt}( \frac{g }{b \rho_0} \tilde{\tilde \rho} \tilde{\tilde \rho}^*) +
\frac{g }{\rho_0} \tilde{\tilde \rho}^* \tilde J(\bm{\kappa}) + \frac{g}{\rho_0} \tilde{\tilde \rho} \tilde J^*(\bm{\kappa})
- \frac{g}{\rho_0} \tilde u_3 \tilde{\tilde \rho}^* - \frac{g }{\rho_0} \tilde u_3^* \tilde{\tilde \rho} = \gamma \frac{g }{b\rho_0} \kappa^2 (\tilde u_3^* \tilde {\tilde \rho} + \tilde u_3 \tilde {\tilde \rho}^*)
\label{pe}
\end{eqnarray}
The total energy evolution is given by the sum of Eqs.~\ref{ke} and \ref{pe}. The transfer terms are:
\begin{itemize}
\item Kinetic-to-kinetic term: $T_K(\bk)=\tilde{u_j}^* \tilde G_j + \tilde{u_j} \tilde G_j^*$
\item Potential-to-potential term: $T_P(\bk)=\frac{g }{\rho_0} (\tilde{\tilde \rho}^* \tilde J + \tilde{\tilde \rho} \tilde J^*)$
\item Exchange term: $T_E(\bk)=\frac{g}{\rho_0}(\tilde{u_3}^*\tilde{\tilde \rho} + \tilde u_3 \tilde{\tilde \rho}^*)$
\end{itemize}again, $\tilde G_j(\bk) = {\cal F}_{\bk}\{u_i \partial_i u_j\}$, $\tilde J(\bk) = {\cal F}_{\bm{\kappa}}\{u_i \partial_i \tilde\rho\}$.
This should be enough for our calculations.
\section{The connection to physical space (two-point correlation function) representation}
watch this space.
\end{document}