forked from cpuimage/WebRTC_AECM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaecm.c
4594 lines (3979 loc) · 169 KB
/
aecm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "aecm.h"
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdint.h>
static __inline int32_t WebRtcSpl_AddSatW32(int32_t a, int32_t b) {
// Do the addition in unsigned numbers, since signed overflow is undefined
// behavior.
const int32_t sum = (int32_t) ((uint32_t) a + (uint32_t) b);
// a + b can't overflow if a and b have different signs. If they have the
// same sign, a + b also has the same sign iff it didn't overflow.
if ((a < 0) == (b < 0) && (a < 0) != (sum < 0)) {
// The direction of the overflow is obvious from the sign of a + b.
return sum < 0 ? INT32_MAX : INT32_MIN;
}
return sum;
}
static __inline uint32_t __clz_uint32(uint32_t v) {
// Never used with input 0
assert(v > 0);
#if defined(__INTEL_COMPILER)
return _bit_scan_reverse(v) ^ 31U;
#elif defined(__GNUC__) && (__GNUC__ >= 4 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4))
// This will translate either to (bsr ^ 31U), clz , ctlz, cntlz, lzcnt depending on
// -march= setting or to a software routine in exotic machines.
return __builtin_clz(v);
#elif defined(_MSC_VER)
// for _BitScanReverse
#include <intrin.h>
{
uint32_t idx;
_BitScanReverse(&idx, v);
return idx ^ 31U;
}
#else
// Will never be emitted for MSVC, GCC, Intel compilers
static const uint8_t byte_to_unary_table[] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
return word > 0xffffff ? byte_to_unary_table[v >> 24] :
word > 0xffff ? byte_to_unary_table[v >> 16] + 8 :
word > 0xff ? byte_to_unary_table[v >> 8] + 16 :
byte_to_unary_table[v] + 24;
#endif
}
// Return the number of steps a can be left-shifted without overflow,
// or 0 if a == 0.
static __inline int16_t WebRtcSpl_NormW16(int16_t a) {
const int32_t a32 = a;
return a == 0 ? 0 : __clz_uint32(a < 0 ? ~a32 : a32) - 17;
}
// Return the number of steps a can be left-shifted without overflow,
// or 0 if a == 0.
static __inline int16_t NormU32(uint32_t a) {
if (a == 0) return 0;
return (int16_t) __clz_uint32(a);
}
// Return the number of steps a can be left-shifted without overflow,
// or 0 if a == 0.
static __inline int16_t NormW32(int32_t a) {
if (a == 0) return 0;
uint32_t v = (uint32_t) (a < 0 ? ~a : a);
// Returns the number of leading zero bits in the argument.
return (int16_t) (__clz_uint32(v) - 1);
}
static __inline int16_t WebRtcSpl_SatW32ToW16(int32_t value32) {
int16_t out16 = (int16_t) value32;
if (value32 > 32767)
out16 = 32767;
else if (value32 < -32768)
out16 = -32768;
return out16;
}
static __inline int16_t WebRtcSpl_AddSatW16(int16_t a, int16_t b) {
return WebRtcSpl_SatW32ToW16((int32_t) a + (int32_t) b);
}
// Return the number of steps a can be left-shifted without overflow,
// or 0 if a == 0.
static __inline int16_t WebRtcSpl_NormW32(int32_t a) {
if (a == 0) return 0;
uint32_t v = (uint32_t) (a < 0 ? ~a : a);
// Returns the number of leading zero bits in the argument.
return (int16_t) (__clz_uint32(v) - 1);
}
int32_t WebRtcSpl_DivW32W16(int32_t num, int16_t den) {
// Guard against division with 0
if (den != 0) {
return (int32_t) (num / den);
} else {
return (int32_t) 0x7FFFFFFF;
}
}
#ifdef AEC_DEBUG
FILE *dfile;
FILE *testfile;
#endif
const int16_t WebRtcAecm_kCosTable[] = {
8192, 8190, 8187, 8180, 8172, 8160, 8147, 8130, 8112,
8091, 8067, 8041, 8012, 7982, 7948, 7912, 7874, 7834,
7791, 7745, 7697, 7647, 7595, 7540, 7483, 7424, 7362,
7299, 7233, 7164, 7094, 7021, 6947, 6870, 6791, 6710,
6627, 6542, 6455, 6366, 6275, 6182, 6087, 5991, 5892,
5792, 5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971, 3845,
3719, 3591, 3462, 3331, 3200, 3068, 2935, 2801, 2667,
2531, 2395, 2258, 2120, 1981, 1842, 1703, 1563, 1422,
1281, 1140, 998, 856, 713, 571, 428, 285, 142,
0, -142, -285, -428, -571, -713, -856, -998, -1140,
-1281, -1422, -1563, -1703, -1842, -1981, -2120, -2258, -2395,
-2531, -2667, -2801, -2935, -3068, -3200, -3331, -3462, -3591,
-3719, -3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
-4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586, -5690,
-5792, -5892, -5991, -6087, -6182, -6275, -6366, -6455, -6542,
-6627, -6710, -6791, -6870, -6947, -7021, -7094, -7164, -7233,
-7299, -7362, -7424, -7483, -7540, -7595, -7647, -7697, -7745,
-7791, -7834, -7874, -7912, -7948, -7982, -8012, -8041, -8067,
-8091, -8112, -8130, -8147, -8160, -8172, -8180, -8187, -8190,
-8191, -8190, -8187, -8180, -8172, -8160, -8147, -8130, -8112,
-8091, -8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
-7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424, -7362,
-7299, -7233, -7164, -7094, -7021, -6947, -6870, -6791, -6710,
-6627, -6542, -6455, -6366, -6275, -6182, -6087, -5991, -5892,
-5792, -5690, -5586, -5481, -5374, -5265, -5155, -5043, -4930,
-4815, -4698, -4580, -4461, -4341, -4219, -4096, -3971, -3845,
-3719, -3591, -3462, -3331, -3200, -3068, -2935, -2801, -2667,
-2531, -2395, -2258, -2120, -1981, -1842, -1703, -1563, -1422,
-1281, -1140, -998, -856, -713, -571, -428, -285, -142,
0, 142, 285, 428, 571, 713, 856, 998, 1140,
1281, 1422, 1563, 1703, 1842, 1981, 2120, 2258, 2395,
2531, 2667, 2801, 2935, 3068, 3200, 3331, 3462, 3591,
3719, 3845, 3971, 4095, 4219, 4341, 4461, 4580, 4698,
4815, 4930, 5043, 5155, 5265, 5374, 5481, 5586, 5690,
5792, 5892, 5991, 6087, 6182, 6275, 6366, 6455, 6542,
6627, 6710, 6791, 6870, 6947, 7021, 7094, 7164, 7233,
7299, 7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041, 8067,
8091, 8112, 8130, 8147, 8160, 8172, 8180, 8187, 8190
};
const int16_t WebRtcAecm_kSinTable[] = {
0, 142, 285, 428, 571, 713, 856, 998,
1140, 1281, 1422, 1563, 1703, 1842, 1981, 2120,
2258, 2395, 2531, 2667, 2801, 2935, 3068, 3200,
3331, 3462, 3591, 3719, 3845, 3971, 4095, 4219,
4341, 4461, 4580, 4698, 4815, 4930, 5043, 5155,
5265, 5374, 5481, 5586, 5690, 5792, 5892, 5991,
6087, 6182, 6275, 6366, 6455, 6542, 6627, 6710,
6791, 6870, 6947, 7021, 7094, 7164, 7233, 7299,
7362, 7424, 7483, 7540, 7595, 7647, 7697, 7745,
7791, 7834, 7874, 7912, 7948, 7982, 8012, 8041,
8067, 8091, 8112, 8130, 8147, 8160, 8172, 8180,
8187, 8190, 8191, 8190, 8187, 8180, 8172, 8160,
8147, 8130, 8112, 8091, 8067, 8041, 8012, 7982,
7948, 7912, 7874, 7834, 7791, 7745, 7697, 7647,
7595, 7540, 7483, 7424, 7362, 7299, 7233, 7164,
7094, 7021, 6947, 6870, 6791, 6710, 6627, 6542,
6455, 6366, 6275, 6182, 6087, 5991, 5892, 5792,
5690, 5586, 5481, 5374, 5265, 5155, 5043, 4930,
4815, 4698, 4580, 4461, 4341, 4219, 4096, 3971,
3845, 3719, 3591, 3462, 3331, 3200, 3068, 2935,
2801, 2667, 2531, 2395, 2258, 2120, 1981, 1842,
1703, 1563, 1422, 1281, 1140, 998, 856, 713,
571, 428, 285, 142, 0, -142, -285, -428,
-571, -713, -856, -998, -1140, -1281, -1422, -1563,
-1703, -1842, -1981, -2120, -2258, -2395, -2531, -2667,
-2801, -2935, -3068, -3200, -3331, -3462, -3591, -3719,
-3845, -3971, -4095, -4219, -4341, -4461, -4580, -4698,
-4815, -4930, -5043, -5155, -5265, -5374, -5481, -5586,
-5690, -5792, -5892, -5991, -6087, -6182, -6275, -6366,
-6455, -6542, -6627, -6710, -6791, -6870, -6947, -7021,
-7094, -7164, -7233, -7299, -7362, -7424, -7483, -7540,
-7595, -7647, -7697, -7745, -7791, -7834, -7874, -7912,
-7948, -7982, -8012, -8041, -8067, -8091, -8112, -8130,
-8147, -8160, -8172, -8180, -8187, -8190, -8191, -8190,
-8187, -8180, -8172, -8160, -8147, -8130, -8112, -8091,
-8067, -8041, -8012, -7982, -7948, -7912, -7874, -7834,
-7791, -7745, -7697, -7647, -7595, -7540, -7483, -7424,
-7362, -7299, -7233, -7164, -7094, -7021, -6947, -6870,
-6791, -6710, -6627, -6542, -6455, -6366, -6275, -6182,
-6087, -5991, -5892, -5792, -5690, -5586, -5481, -5374,
-5265, -5155, -5043, -4930, -4815, -4698, -4580, -4461,
-4341, -4219, -4096, -3971, -3845, -3719, -3591, -3462,
-3331, -3200, -3068, -2935, -2801, -2667, -2531, -2395,
-2258, -2120, -1981, -1842, -1703, -1563, -1422, -1281,
-1140, -998, -856, -713, -571, -428, -285, -142
};
// Initialization table for echo channel in 8 kHz
static const int16_t kChannelStored8kHz[PART_LEN1] = {
2040, 1815, 1590, 1498, 1405, 1395, 1385, 1418,
1451, 1506, 1562, 1644, 1726, 1804, 1882, 1918,
1953, 1982, 2010, 2025, 2040, 2034, 2027, 2021,
2014, 1997, 1980, 1925, 1869, 1800, 1732, 1683,
1635, 1604, 1572, 1545, 1517, 1481, 1444, 1405,
1367, 1331, 1294, 1270, 1245, 1239, 1233, 1247,
1260, 1282, 1303, 1338, 1373, 1407, 1441, 1470,
1499, 1524, 1549, 1565, 1582, 1601, 1621, 1649,
1676
};
// Initialization table for echo channel in 16 kHz
static const int16_t kChannelStored16kHz[PART_LEN1] = {
2040, 1590, 1405, 1385, 1451, 1562, 1726, 1882,
1953, 2010, 2040, 2027, 2014, 1980, 1869, 1732,
1635, 1572, 1517, 1444, 1367, 1294, 1245, 1233,
1260, 1303, 1373, 1441, 1499, 1549, 1582, 1621,
1676, 1741, 1802, 1861, 1921, 1983, 2040, 2102,
2170, 2265, 2375, 2515, 2651, 2781, 2922, 3075,
3253, 3471, 3738, 3976, 4151, 4258, 4308, 4288,
4270, 4253, 4237, 4179, 4086, 3947, 3757, 3484,
3153
};
// Moves the pointer to the next entry and inserts |far_spectrum| and
// corresponding Q-domain in its buffer.
//
// Inputs:
// - self : Pointer to the delay estimation instance
// - far_spectrum : Pointer to the far end spectrum
// - far_q : Q-domain of far end spectrum
//
void WebRtcAecm_UpdateFarHistory(AecmCore *self,
uint16_t *far_spectrum,
int far_q) {
// Get new buffer position
self->far_history_pos++;
if (self->far_history_pos >= MAX_DELAY) {
self->far_history_pos = 0;
}
// Update Q-domain buffer
self->far_q_domains[self->far_history_pos] = far_q;
// Update far end spectrum buffer
memcpy(&(self->far_history[self->far_history_pos * PART_LEN1]),
far_spectrum,
sizeof(uint16_t) * PART_LEN1);
}
// Returns a pointer to the far end spectrum aligned to current near end
// spectrum. The function WebRtc_DelayEstimatorProcessFix(...) should have been
// called before AlignedFarend(...). Otherwise, you get the pointer to the
// previous frame. The memory is only valid until the next call of
// WebRtc_DelayEstimatorProcessFix(...).
//
// Inputs:
// - self : Pointer to the AECM instance.
// - delay : Current delay estimate.
//
// Output:
// - far_q : The Q-domain of the aligned far end spectrum
//
// Return value:
// - far_spectrum : Pointer to the aligned far end spectrum
// NULL - Error
//
const uint16_t *WebRtcAecm_AlignedFarend(AecmCore *self,
int *far_q,
int delay) {
int buffer_position = 0;
assert(self);
buffer_position = self->far_history_pos - delay;
// Check buffer position
if (buffer_position < 0) {
buffer_position += MAX_DELAY;
}
// Get Q-domain
*far_q = self->far_q_domains[buffer_position];
// Return far end spectrum
return &(self->far_history[buffer_position * PART_LEN1]);
}
// Declare function pointers.
CalcLinearEnergies WebRtcAecm_CalcLinearEnergies;
StoreAdaptiveChannel WebRtcAecm_StoreAdaptiveChannel;
ResetAdaptiveChannel WebRtcAecm_ResetAdaptiveChannel;
AecmCore *WebRtcAecm_CreateCore() {
AecmCore *aecm = (AecmCore *) (malloc(sizeof(AecmCore)));
aecm->farFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
sizeof(int16_t));
if (!aecm->farFrameBuf) {
WebRtcAecm_FreeCore(aecm);
return NULL;
}
aecm->nearNoisyFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
sizeof(int16_t));
if (!aecm->nearNoisyFrameBuf) {
WebRtcAecm_FreeCore(aecm);
return NULL;
}
aecm->nearCleanFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
sizeof(int16_t));
if (!aecm->nearCleanFrameBuf) {
WebRtcAecm_FreeCore(aecm);
return NULL;
}
aecm->outFrameBuf = WebRtc_CreateBuffer(FRAME_LEN + PART_LEN,
sizeof(int16_t));
if (!aecm->outFrameBuf) {
WebRtcAecm_FreeCore(aecm);
return NULL;
}
aecm->delay_estimator_farend = WebRtc_CreateDelayEstimatorFarend(PART_LEN1,
MAX_DELAY);
if (aecm->delay_estimator_farend == NULL) {
WebRtcAecm_FreeCore(aecm);
return NULL;
}
aecm->delay_estimator =
WebRtc_CreateDelayEstimator(aecm->delay_estimator_farend, 0);
if (aecm->delay_estimator == NULL) {
WebRtcAecm_FreeCore(aecm);
return NULL;
}
// TODO(bjornv): Explicitly disable robust delay validation until no
// performance regression has been established. Then remove the line.
WebRtc_enable_robust_validation(aecm->delay_estimator, 0);
aecm->real_fft = WebRtcSpl_CreateRealFFT(PART_LEN_SHIFT);
if (aecm->real_fft == NULL) {
WebRtcAecm_FreeCore(aecm);
return NULL;
}
// Init some aecm pointers. 16 and 32 byte alignment is only necessary
// for Neon code currently.
aecm->xBuf = (int16_t *) (((uintptr_t) aecm->xBuf_buf + 31) & ~31);
aecm->dBufClean = (int16_t *) (((uintptr_t) aecm->dBufClean_buf + 31) & ~31);
aecm->dBufNoisy = (int16_t *) (((uintptr_t) aecm->dBufNoisy_buf + 31) & ~31);
aecm->outBuf = (int16_t *) (((uintptr_t) aecm->outBuf_buf + 15) & ~15);
aecm->channelStored = (int16_t *) (((uintptr_t)
aecm->channelStored_buf + 15) & ~15);
aecm->channelAdapt16 = (int16_t *) (((uintptr_t)
aecm->channelAdapt16_buf + 15) & ~15);
aecm->channelAdapt32 = (int32_t *) (((uintptr_t)
aecm->channelAdapt32_buf + 31) & ~31);
return aecm;
}
void WebRtcAecm_InitEchoPathCore(AecmCore *aecm, const int16_t *echo_path) {
int i = 0;
// Reset the stored channel
memcpy(aecm->channelStored, echo_path, sizeof(int16_t) * PART_LEN1);
// Reset the adapted channels
memcpy(aecm->channelAdapt16, echo_path, sizeof(int16_t) * PART_LEN1);
for (i = 0; i < PART_LEN1; i++) {
aecm->channelAdapt32[i] = (int32_t) aecm->channelAdapt16[i] << 16;
}
// Reset channel storing variables
aecm->mseAdaptOld = 1000;
aecm->mseStoredOld = 1000;
aecm->mseThreshold = (int32_t) 0x7fffffff;
aecm->mseChannelCount = 0;
}
static void CalcLinearEnergiesC(AecmCore *aecm,
const uint16_t *far_spectrum,
int32_t *echo_est,
uint32_t *far_energy,
uint32_t *echo_energy_adapt,
uint32_t *echo_energy_stored) {
int i;
// Get energy for the delayed far end signal and estimated
// echo using both stored and adapted channels.
for (i = 0; i < PART_LEN1; i++) {
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
far_spectrum[i]);
(*far_energy) += (uint32_t) (far_spectrum[i]);
*echo_energy_adapt += aecm->channelAdapt16[i] * far_spectrum[i];
(*echo_energy_stored) += (uint32_t) echo_est[i];
}
}
static void StoreAdaptiveChannelC(AecmCore *aecm,
const uint16_t *far_spectrum,
int32_t *echo_est) {
int i;
// During startup we store the channel every block.
memcpy(aecm->channelStored, aecm->channelAdapt16, sizeof(int16_t) * PART_LEN1);
// Recalculate echo estimate
for (i = 0; i < PART_LEN; i += 4) {
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
far_spectrum[i]);
echo_est[i + 1] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 1],
far_spectrum[i + 1]);
echo_est[i + 2] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 2],
far_spectrum[i + 2]);
echo_est[i + 3] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i + 3],
far_spectrum[i + 3]);
}
echo_est[i] = WEBRTC_SPL_MUL_16_U16(aecm->channelStored[i],
far_spectrum[i]);
}
static void ResetAdaptiveChannelC(AecmCore *aecm) {
int i;
// The stored channel has a significantly lower MSE than the adaptive one for
// two consecutive calculations. Reset the adaptive channel.
memcpy(aecm->channelAdapt16, aecm->channelStored,
sizeof(int16_t) * PART_LEN1);
// Restore the W32 channel
for (i = 0; i < PART_LEN; i += 4) {
aecm->channelAdapt32[i] = (int32_t) aecm->channelStored[i] << 16;
aecm->channelAdapt32[i + 1] = (int32_t) aecm->channelStored[i + 1] << 16;
aecm->channelAdapt32[i + 2] = (int32_t) aecm->channelStored[i + 2] << 16;
aecm->channelAdapt32[i + 3] = (int32_t) aecm->channelStored[i + 3] << 16;
}
aecm->channelAdapt32[i] = (int32_t) aecm->channelStored[i] << 16;
}
// Initialize function pointers for ARM Neon platform.
#if defined(WEBRTC_HAS_NEON)
static void WebRtcAecm_InitNeon(void)
{
WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannelNeon;
WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannelNeon;
WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergiesNeon;
}
#endif
// Initialize function pointers for MIPS platform.
#if defined(MIPS32_LE)
static void WebRtcAecm_InitMips(void)
{
#if defined(MIPS_DSP_R1_LE)
WebRtcAecm_StoreAdaptiveChannel = WebRtcAecm_StoreAdaptiveChannel_mips;
WebRtcAecm_ResetAdaptiveChannel = WebRtcAecm_ResetAdaptiveChannel_mips;
#endif
WebRtcAecm_CalcLinearEnergies = WebRtcAecm_CalcLinearEnergies_mips;
}
#endif
// WebRtcAecm_InitCore(...)
//
// This function initializes the AECM instant created with WebRtcAecm_CreateCore(...)
// Input:
// - aecm : Pointer to the Echo Suppression instance
// - samplingFreq : Sampling Frequency
//
// Output:
// - aecm : Initialized instance
//
// Return value : 0 - Ok
// -1 - Error
//
int WebRtcAecm_InitCore(AecmCore *const aecm, int samplingFreq) {
int i = 0;
int32_t tmp32 = PART_LEN1 * PART_LEN1;
int16_t tmp16 = PART_LEN1;
if (samplingFreq != 8000 && samplingFreq != 16000) {
return -1;
}
// sanity check of sampling frequency
aecm->mult = (int16_t) samplingFreq / 8000;
aecm->farBufWritePos = 0;
aecm->farBufReadPos = 0;
aecm->knownDelay = 0;
aecm->lastKnownDelay = 0;
WebRtc_InitBuffer(aecm->farFrameBuf);
WebRtc_InitBuffer(aecm->nearNoisyFrameBuf);
WebRtc_InitBuffer(aecm->nearCleanFrameBuf);
WebRtc_InitBuffer(aecm->outFrameBuf);
memset(aecm->xBuf_buf, 0, sizeof(aecm->xBuf_buf));
memset(aecm->dBufClean_buf, 0, sizeof(aecm->dBufClean_buf));
memset(aecm->dBufNoisy_buf, 0, sizeof(aecm->dBufNoisy_buf));
memset(aecm->outBuf_buf, 0, sizeof(aecm->outBuf_buf));
aecm->seed = 666;
aecm->totCount = 0;
if (WebRtc_InitDelayEstimatorFarend(aecm->delay_estimator_farend) != 0) {
return -1;
}
if (WebRtc_InitDelayEstimator(aecm->delay_estimator) != 0) {
return -1;
}
// Set far end histories to zero
memset(aecm->far_history, 0, sizeof(uint16_t) * PART_LEN1 * MAX_DELAY);
memset(aecm->far_q_domains, 0, sizeof(int) * MAX_DELAY);
aecm->far_history_pos = MAX_DELAY;
aecm->nlpFlag = 1;
aecm->fixedDelay = -1;
aecm->dfaCleanQDomain = 0;
aecm->dfaCleanQDomainOld = 0;
aecm->dfaNoisyQDomain = 0;
aecm->dfaNoisyQDomainOld = 0;
memset(aecm->nearLogEnergy, 0, sizeof(aecm->nearLogEnergy));
aecm->farLogEnergy = 0;
memset(aecm->echoAdaptLogEnergy, 0, sizeof(aecm->echoAdaptLogEnergy));
memset(aecm->echoStoredLogEnergy, 0, sizeof(aecm->echoStoredLogEnergy));
// Initialize the echo channels with a stored shape.
if (samplingFreq == 8000) {
WebRtcAecm_InitEchoPathCore(aecm, kChannelStored8kHz);
} else {
WebRtcAecm_InitEchoPathCore(aecm, kChannelStored16kHz);
}
memset(aecm->echoFilt, 0, sizeof(aecm->echoFilt));
memset(aecm->nearFilt, 0, sizeof(aecm->nearFilt));
aecm->noiseEstCtr = 0;
aecm->cngMode = AecmTrue;
memset(aecm->noiseEstTooLowCtr, 0, sizeof(aecm->noiseEstTooLowCtr));
memset(aecm->noiseEstTooHighCtr, 0, sizeof(aecm->noiseEstTooHighCtr));
// Shape the initial noise level to an approximate pink noise.
for (i = 0; i < (PART_LEN1 >> 1) - 1; i++) {
aecm->noiseEst[i] = (tmp32 << 8);
tmp16--;
tmp32 -= (int32_t) ((tmp16 << 1) + 1);
}
for (; i < PART_LEN1; i++) {
aecm->noiseEst[i] = (tmp32 << 8);
}
aecm->farEnergyMin = 32767;
aecm->farEnergyMax = -32768;
aecm->farEnergyMaxMin = 0;
aecm->farEnergyVAD = FAR_ENERGY_MIN; // This prevents false speech detection at the
// beginning.
aecm->farEnergyMSE = 0;
aecm->currentVADValue = 0;
aecm->vadUpdateCount = 0;
aecm->firstVAD = 1;
aecm->startupState = 0;
aecm->supGain = SUPGAIN_DEFAULT;
aecm->supGainOld = SUPGAIN_DEFAULT;
aecm->supGainErrParamA = SUPGAIN_ERROR_PARAM_A;
aecm->supGainErrParamD = SUPGAIN_ERROR_PARAM_D;
aecm->supGainErrParamDiffAB = SUPGAIN_ERROR_PARAM_A - SUPGAIN_ERROR_PARAM_B;
aecm->supGainErrParamDiffBD = SUPGAIN_ERROR_PARAM_B - SUPGAIN_ERROR_PARAM_D;
// Assert a preprocessor definition at compile-time. It's an assumption
// used in assembly code, so check the assembly files before any change.
static_assert(PART_LEN % 16 == 0, "PART_LEN is not a multiple of 16");
// Initialize function pointers.
WebRtcAecm_CalcLinearEnergies = CalcLinearEnergiesC;
WebRtcAecm_StoreAdaptiveChannel = StoreAdaptiveChannelC;
WebRtcAecm_ResetAdaptiveChannel = ResetAdaptiveChannelC;
#if defined(WEBRTC_HAS_NEON)
WebRtcAecm_InitNeon();
#endif
#if defined(MIPS32_LE)
WebRtcAecm_InitMips();
#endif
return 0;
}
// TODO(bjornv): This function is currently not used. Add support for these
// parameters from a higher level
int WebRtcAecm_Control(AecmCore *aecm, int delay, int nlpFlag) {
aecm->nlpFlag = nlpFlag;
aecm->fixedDelay = delay;
return 0;
}
void WebRtcAecm_FreeCore(AecmCore *aecm) {
if (aecm == NULL) {
return;
}
WebRtc_FreeBuffer(aecm->farFrameBuf);
WebRtc_FreeBuffer(aecm->nearNoisyFrameBuf);
WebRtc_FreeBuffer(aecm->nearCleanFrameBuf);
WebRtc_FreeBuffer(aecm->outFrameBuf);
WebRtc_FreeDelayEstimator(aecm->delay_estimator);
WebRtc_FreeDelayEstimatorFarend(aecm->delay_estimator_farend);
WebRtcSpl_FreeRealFFT(aecm->real_fft);
free(aecm);
}
int WebRtcAecm_ProcessFrame(AecmCore *aecm,
const int16_t *farend,
const int16_t *nearendNoisy,
const int16_t *nearendClean,
int16_t *out) {
int16_t outBlock_buf[PART_LEN + 8]; // Align buffer to 8-byte boundary.
int16_t *outBlock = (int16_t *) (((uintptr_t) outBlock_buf + 15) & ~15);
int16_t farFrame[FRAME_LEN];
const int16_t *out_ptr = NULL;
int size = 0;
// Buffer the current frame.
// Fetch an older one corresponding to the delay.
WebRtcAecm_BufferFarFrame(aecm, farend, FRAME_LEN);
WebRtcAecm_FetchFarFrame(aecm, farFrame, FRAME_LEN, aecm->knownDelay);
// Buffer the synchronized far and near frames,
// to pass the smaller blocks individually.
WebRtc_WriteBuffer(aecm->farFrameBuf, farFrame, FRAME_LEN);
WebRtc_WriteBuffer(aecm->nearNoisyFrameBuf, nearendNoisy, FRAME_LEN);
if (nearendClean != NULL) {
WebRtc_WriteBuffer(aecm->nearCleanFrameBuf, nearendClean, FRAME_LEN);
}
// Process as many blocks as possible.
while (WebRtc_available_read(aecm->farFrameBuf) >= PART_LEN) {
int16_t far_block[PART_LEN];
const int16_t *far_block_ptr = NULL;
int16_t near_noisy_block[PART_LEN];
const int16_t *near_noisy_block_ptr = NULL;
WebRtc_ReadBuffer(aecm->farFrameBuf, (void **) &far_block_ptr, far_block,
PART_LEN);
WebRtc_ReadBuffer(aecm->nearNoisyFrameBuf,
(void **) &near_noisy_block_ptr,
near_noisy_block,
PART_LEN);
if (nearendClean != NULL) {
int16_t near_clean_block[PART_LEN];
const int16_t *near_clean_block_ptr = NULL;
WebRtc_ReadBuffer(aecm->nearCleanFrameBuf,
(void **) &near_clean_block_ptr,
near_clean_block,
PART_LEN);
if (WebRtcAecm_ProcessBlock(aecm,
far_block_ptr,
near_noisy_block_ptr,
near_clean_block_ptr,
outBlock) == -1) {
return -1;
}
} else {
if (WebRtcAecm_ProcessBlock(aecm,
far_block_ptr,
near_noisy_block_ptr,
NULL,
outBlock) == -1) {
return -1;
}
}
WebRtc_WriteBuffer(aecm->outFrameBuf, outBlock, PART_LEN);
}
// Stuff the out buffer if we have less than a frame to output.
// This should only happen for the first frame.
size = (int) WebRtc_available_read(aecm->outFrameBuf);
if (size < FRAME_LEN) {
WebRtc_MoveReadPtr(aecm->outFrameBuf, size - FRAME_LEN);
}
// Obtain an output frame.
WebRtc_ReadBuffer(aecm->outFrameBuf, (void **) &out_ptr, out, FRAME_LEN);
if (out_ptr != out) {
// ReadBuffer() hasn't copied to |out| in this case.
memcpy(out, out_ptr, FRAME_LEN * sizeof(int16_t));
}
return 0;
}
// WebRtcAecm_AsymFilt(...)
//
// Performs asymmetric filtering.
//
// Inputs:
// - filtOld : Previous filtered value.
// - inVal : New input value.
// - stepSizePos : Step size when we have a positive contribution.
// - stepSizeNeg : Step size when we have a negative contribution.
//
// Output:
//
// Return: - Filtered value.
//
int16_t WebRtcAecm_AsymFilt(const int16_t filtOld, const int16_t inVal,
const int16_t stepSizePos,
const int16_t stepSizeNeg) {
int16_t retVal;
if ((filtOld == 32767) | (filtOld == -32768)) {
return inVal;
}
retVal = filtOld;
if (filtOld > inVal) {
retVal -= (filtOld - inVal) >> stepSizeNeg;
} else {
retVal += (inVal - filtOld) >> stepSizePos;
}
return retVal;
}
// ExtractFractionPart(a, zeros)
//
// returns the fraction part of |a|, with |zeros| number of leading zeros, as an
// int16_t scaled to Q8. There is no sanity check of |a| in the sense that the
// number of zeros match.
static int16_t ExtractFractionPart(uint32_t a, int zeros) {
return (int16_t) (((a << zeros) & 0x7FFFFFFF) >> 23);
}
// Calculates and returns the log of |energy| in Q8. The input |energy| is
// supposed to be in Q(|q_domain|).
static int16_t LogOfEnergyInQ8(uint32_t energy, int q_domain) {
static const int16_t kLogLowValue = PART_LEN_SHIFT << 7;
int16_t log_energy_q8 = kLogLowValue;
if (energy > 0) {
int zeros = NormU32(energy);
int16_t frac = ExtractFractionPart(energy, zeros);
// log2 of |energy| in Q8.
log_energy_q8 += ((31 - zeros) << 8) + frac - (q_domain << 8);
}
return log_energy_q8;
}
// WebRtcAecm_CalcEnergies(...)
//
// This function calculates the log of energies for nearend, farend and estimated
// echoes. There is also an update of energy decision levels, i.e. internal VAD.
//
//
// @param aecm [i/o] Handle of the AECM instance.
// @param far_spectrum [in] Pointer to farend spectrum.
// @param far_q [in] Q-domain of farend spectrum.
// @param nearEner [in] Near end energy for current block in
// Q(aecm->dfaQDomain).
// @param echoEst [out] Estimated echo in Q(xfa_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_CalcEnergies(AecmCore *aecm,
const uint16_t *far_spectrum,
const int16_t far_q,
const uint32_t nearEner,
int32_t *echoEst) {
// Local variables
uint32_t tmpAdapt = 0;
uint32_t tmpStored = 0;
uint32_t tmpFar = 0;
int i;
int16_t tmp16;
int16_t increase_max_shifts = 4;
int16_t decrease_max_shifts = 11;
int16_t increase_min_shifts = 11;
int16_t decrease_min_shifts = 3;
// Get log of near end energy and store in buffer
// Shift buffer
memmove(aecm->nearLogEnergy + 1, aecm->nearLogEnergy,
sizeof(int16_t) * (MAX_BUF_LEN - 1));
// Logarithm of integrated magnitude spectrum (nearEner)
aecm->nearLogEnergy[0] = LogOfEnergyInQ8(nearEner, aecm->dfaNoisyQDomain);
WebRtcAecm_CalcLinearEnergies(aecm, far_spectrum, echoEst, &tmpFar, &tmpAdapt, &tmpStored);
// Shift buffers
memmove(aecm->echoAdaptLogEnergy + 1, aecm->echoAdaptLogEnergy,
sizeof(int16_t) * (MAX_BUF_LEN - 1));
memmove(aecm->echoStoredLogEnergy + 1, aecm->echoStoredLogEnergy,
sizeof(int16_t) * (MAX_BUF_LEN - 1));
// Logarithm of delayed far end energy
aecm->farLogEnergy = LogOfEnergyInQ8(tmpFar, far_q);
// Logarithm of estimated echo energy through adapted channel
aecm->echoAdaptLogEnergy[0] = LogOfEnergyInQ8(tmpAdapt,
RESOLUTION_CHANNEL16 + far_q);
// Logarithm of estimated echo energy through stored channel
aecm->echoStoredLogEnergy[0] =
LogOfEnergyInQ8(tmpStored, RESOLUTION_CHANNEL16 + far_q);
// Update farend energy levels (min, max, vad, mse)
if (aecm->farLogEnergy > FAR_ENERGY_MIN) {
if (aecm->startupState == 0) {
increase_max_shifts = 2;
decrease_min_shifts = 2;
increase_min_shifts = 8;
}
aecm->farEnergyMin = WebRtcAecm_AsymFilt(aecm->farEnergyMin, aecm->farLogEnergy,
increase_min_shifts, decrease_min_shifts);
aecm->farEnergyMax = WebRtcAecm_AsymFilt(aecm->farEnergyMax, aecm->farLogEnergy,
increase_max_shifts, decrease_max_shifts);
aecm->farEnergyMaxMin = (aecm->farEnergyMax - aecm->farEnergyMin);
// Dynamic VAD region size
tmp16 = 2560 - aecm->farEnergyMin;
if (tmp16 > 0) {
tmp16 = (int16_t) ((tmp16 * FAR_ENERGY_VAD_REGION) >> 9);
} else {
tmp16 = 0;
}
tmp16 += FAR_ENERGY_VAD_REGION;
if ((aecm->startupState == 0) | (aecm->vadUpdateCount > 1024)) {
// In startup phase or VAD update halted
aecm->farEnergyVAD = aecm->farEnergyMin + tmp16;
} else {
if (aecm->farEnergyVAD > aecm->farLogEnergy) {
aecm->farEnergyVAD +=
(aecm->farLogEnergy + tmp16 - aecm->farEnergyVAD) >> 6;
aecm->vadUpdateCount = 0;
} else {
aecm->vadUpdateCount++;
}
}
// Put MSE threshold higher than VAD
aecm->farEnergyMSE = aecm->farEnergyVAD + (1 << 8);
}
// Update VAD variables
if (aecm->farLogEnergy > aecm->farEnergyVAD) {
if ((aecm->startupState == 0) | (aecm->farEnergyMaxMin > FAR_ENERGY_DIFF)) {
// We are in startup or have significant dynamics in input speech level
aecm->currentVADValue = 1;
}
} else {
aecm->currentVADValue = 0;
}
if ((aecm->currentVADValue) && (aecm->firstVAD)) {
aecm->firstVAD = 0;
if (aecm->echoAdaptLogEnergy[0] > aecm->nearLogEnergy[0]) {
// The estimated echo has higher energy than the near end signal.
// This means that the initialization was too aggressive. Scale
// down by a factor 8
for (i = 0; i < PART_LEN1; i++) {
aecm->channelAdapt16[i] >>= 3;
}
// Compensate the adapted echo energy level accordingly.
aecm->echoAdaptLogEnergy[0] -= (3 << 8);
aecm->firstVAD = 1;
}
}
}
// WebRtcAecm_CalcStepSize(...)
//
// This function calculates the step size used in channel estimation
//
//
// @param aecm [in] Handle of the AECM instance.
// @param mu [out] (Return value) Stepsize in log2(), i.e. number of shifts.
//
//
int16_t WebRtcAecm_CalcStepSize(AecmCore *const aecm) {
int32_t tmp32;
int16_t tmp16;
int16_t mu = MU_MAX;
// Here we calculate the step size mu used in the
// following NLMS based Channel estimation algorithm
if (!aecm->currentVADValue) {
// Far end energy level too low, no channel update
mu = 0;
} else if (aecm->startupState > 0) {
if (aecm->farEnergyMin >= aecm->farEnergyMax) {
mu = MU_MIN;
} else {
tmp16 = (aecm->farLogEnergy - aecm->farEnergyMin);
tmp32 = tmp16 * MU_DIFF;
tmp32 = WebRtcSpl_DivW32W16(tmp32, aecm->farEnergyMaxMin);
mu = MU_MIN - 1 - (int16_t) (tmp32);
// The -1 is an alternative to rounding. This way we get a larger
// stepsize, so we in some sense compensate for truncation in NLMS
}
if (mu < MU_MAX) {
mu = MU_MAX; // Equivalent with maximum step size of 2^-MU_MAX
}
}
return mu;
}
// WebRtcAecm_UpdateChannel(...)
//
// This function performs channel estimation. NLMS and decision on channel storage.
//
//
// @param aecm [i/o] Handle of the AECM instance.
// @param far_spectrum [in] Absolute value of the farend signal in Q(far_q)
// @param far_q [in] Q-domain of the farend signal
// @param dfa [in] Absolute value of the nearend signal (Q[aecm->dfaQDomain])
// @param mu [in] NLMS step size.
// @param echoEst [i/o] Estimated echo in Q(far_q+RESOLUTION_CHANNEL16).
//
void WebRtcAecm_UpdateChannel(AecmCore *aecm,
const uint16_t *far_spectrum,
const int16_t far_q,
const uint16_t *const dfa,
const int16_t mu,
int32_t *echoEst) {
uint32_t tmpU32no1, tmpU32no2;
int32_t tmp32no1, tmp32no2;
int32_t mseStored;
int32_t mseAdapt;
int i;
int16_t zerosFar, zerosNum, zerosCh, zerosDfa;
int16_t shiftChFar, shiftNum, shift2ResChan;
int16_t tmp16no1;
int16_t xfaQ, dfaQ;
// This is the channel estimation algorithm. It is base on NLMS but has a variable step
// length, which was calculated above.
if (mu) {
for (i = 0; i < PART_LEN1; i++) {
// Determine norm of channel and farend to make sure we don't get overflow in
// multiplication
zerosCh = NormU32(aecm->channelAdapt32[i]);
zerosFar = NormU32((uint32_t) far_spectrum[i]);
if (zerosCh + zerosFar > 31) {
// Multiplication is safe
tmpU32no1 = WEBRTC_SPL_UMUL_32_16(aecm->channelAdapt32[i],
far_spectrum[i]);
shiftChFar = 0;
} else {
// We need to shift down before multiplication
shiftChFar = 32 - zerosCh - zerosFar;
// If zerosCh == zerosFar == 0, shiftChFar is 32. A
// right shift of 32 is undefined. To avoid that, we
// do this check.
tmpU32no1 = (uint32_t) (
shiftChFar >= 32
? 0
: aecm->channelAdapt32[i] >> shiftChFar) *
far_spectrum[i];
}
// Determine Q-domain of numerator
zerosNum = NormU32(tmpU32no1);
if (dfa[i]) {
zerosDfa = NormU32((uint32_t) dfa[i]);