forked from rabobank-cdc/DeTTECT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
generic.py
1125 lines (949 loc) · 47.6 KB
/
generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import pickle
from datetime import datetime as dt
from io import StringIO
from ruamel.yaml import YAML
from ruamel.yaml.timestamp import TimeStamp as ruamelTimeStamp
from requests import exceptions
from stix2 import datastore, Filter
from constants import *
from upgrade import upgrade_yaml_file
from health import check_yaml_file_health
from stix2 import CompositeDataSource
import dateutil.parser
# Due to performance reasons the import of attackcti is within the function that makes use of this library.
local_stix_path = None
def _save_attack_data(data, path):
"""
Save ATT&CK data to disk for the purpose of caching. Data can be STIX objects our a custom schema.
:param data: the MITRE ATT&CK data to save
:param path: file path to write to, including filename
:return:
"""
if not os.path.exists('cache/'):
os.mkdir('cache/')
with open(path, 'wb') as f:
pickle.dump([data, dt.now()], f)
def _date_hook(json_dict):
"""
Parses STIX dates so that they can be used as date object in dictionaries. Function is used as object_hook function in the JSON serialize.
:param json_dict: the dictionary with STIX data
:return:
"""
for (key, value) in json_dict.items():
if key == 'created':
json_dict['created'] = dateutil.parser.parse(value)
elif key == 'modified':
json_dict['modified'] = dateutil.parser.parse(value)
return json_dict
def _convert_stix_techniques_to_dict(mitre, stix_attack_data):
"""
Convert the STIX list with AttackPatterns to a dictionary for easier use in python and also include the technique_id and DeTT&CT data sources.
:param mitre: pointer to ATT&CK STIX objects
:param stix_attack_data: the MITRE ATT&CK STIX dataset with techniques
:return: list with dictionaries containing all techniques from the input stix_attack_data
"""
# Get all data component objects
data_components = mitre.COMPOSITE_DS.query(Filter("type", "=", "x-mitre-data-component"))
dc_lookup = {dc['id']:dc for dc in data_components}
# Get detects-relationships
relationships = mitre.get_relationships(relationship_type='detects')
tech_dc_lookup = {}
for rl in relationships:
if rl['target_ref'] not in tech_dc_lookup.keys():
tech_dc_lookup[rl['target_ref']] = []
tech_dc_lookup[rl['target_ref']].append(dc_lookup[rl['source_ref']]['name'])
attack_data = []
for stix_tech in stix_attack_data:
tech = json.loads(stix_tech.serialize(), object_hook=_date_hook)
# Add technique_id as key, because it's hard to get from STIX:
tech['technique_id'] = get_attack_id(stix_tech)
# Add data components to the technique:
tech['data_components'] = []
if tech['id'] in tech_dc_lookup.keys():
tech['data_components'] = tech_dc_lookup[tech['id']]
dds_key = 'dettect_data_sources'
tech[dds_key] = []
for dds in DETTECT_DATA_SOURCES:
if tech['technique_id'] == dds['technique_id']:
# When a technique has just 1 DeTT&CT data source which is 'Network Traffic Content' then ignore this one. This means that we
# evaluated if that technique needs a DeTT&CT data source but it has not.
if not (len(dds[dds_key]) == 1 and dds[dds_key][0] == 'Network Traffic Content'):
tech[dds_key] = dds[dds_key]
# Remove 'Network Traffic Content' from the data components list when it's not listed as DeTT&CT data source. In this situation
# we are intentionally replacing the 'Network Traffic Content' with our DeTT&CT data sources.
if 'Network Traffic Content' not in dds[dds_key] and 'Network Traffic Content' in tech['data_components']:
tech['data_components'].remove('Network Traffic Content')
# Remove 'Network Traffic Content' from the DeTT&CT data sources list when having both DeTT&CT data sources ánd 'Network Traffic Content'.
# That's the case where we keep 'Network Traffic Content' in the data components list.
if 'Network Traffic Content' in dds[dds_key]:
tech[dds_key].remove('Network Traffic Content')
break
attack_data.append(tech)
return attack_data
def _convert_stix_groups_to_dict(stix_attack_data):
"""
Convert the STIX list with IntrusionSet to a dictionary for easier use in python and also include the group_id.
:param stix_attack_data: the MITRE ATT&CK STIX dataset with groups
:return: list with dictionaries containing all groups from the input stix_attack_data
"""
attack_data = []
for stix_group in stix_attack_data:
group = json.loads(stix_group.serialize(), object_hook=_date_hook)
# Add group_id as key, because it's hard to get from STIX:
group['group_id'] = get_attack_id(stix_group)
attack_data.append(group)
return attack_data
def _convert_stix_campaigns_to_dict(stix_attack_data):
"""
Convert the STIX list with Campaign to a dictionary for easier use in python and also include the campaign_id.
:param stix_attack_data: the MITRE ATT&CK STIX dataset with campaigns
:return: list with dictionaries containing all campaigns from the input stix_attack_data
"""
attack_data = []
for stix_campaign in stix_attack_data:
campaign = json.loads(stix_campaign.serialize(), object_hook=_date_hook)
# Add campaign_id as key, because it's hard to get from STIX:
campaign['campaign_id'] = get_attack_id(stix_campaign)
attack_data.append(campaign)
return attack_data
def load_attack_data(data_type):
"""
By default the ATT&CK data is loaded from the online TAXII server or from the local cache directory. The
local cache directory will be used if the file is not expired (data file on disk is older then EXPIRE_TIME
seconds). When the local_stix_path option is given, the ATT&CK data will be loaded from the given path of
a local STIX repository.
:param data_type: the desired data type, see DATATYPE_XX constants.
:return: MITRE ATT&CK data object (STIX or custom schema)
"""
from attackcti import attack_client
if local_stix_path is not None:
if local_stix_path is not None and os.path.isdir(os.path.join(local_stix_path, 'enterprise-attack')) \
and os.path.isdir(os.path.join(local_stix_path, 'ics-attack')) \
and os.path.isdir(os.path.join(local_stix_path, 'mobile-attack')):
mitre = attack_client(local_path=local_stix_path)
else:
print('[!] Not a valid local STIX path: ' + local_stix_path)
quit()
else:
if os.path.exists("cache/" + data_type):
with open("cache/" + data_type, 'rb') as f:
cached = pickle.load(f)
write_time = cached[1]
if not (dt.now() - write_time).total_seconds() >= EXPIRE_TIME:
# the first item in the list contains the ATT&CK data
return cached[0]
try:
mitre = attack_client()
except (exceptions.ConnectionError, datastore.DataSourceError) as e:
if hasattr(e, 'request'):
print("[!] Cannot connect to MITRE's CTI TAXII server: " + str(e.request.url))
else:
print("[!] Cannot connect to MITRE's CTI TAXII server")
quit()
attack_data = None
if data_type == DATA_TYPE_STIX_ALL_RELATIONSHIPS:
attack_data = mitre.get_relationships()
elif data_type == DATA_TYPE_STIX_ALL_TECH_ENTERPRISE:
stix_attack_data = mitre.get_enterprise_techniques()
attack_data = _convert_stix_techniques_to_dict(mitre, stix_attack_data)
elif data_type == DATA_TYPE_STIX_ALL_TECH_ICS:
stix_attack_data = mitre.get_ics_techniques()
attack_data = _convert_stix_techniques_to_dict(mitre, stix_attack_data)
elif data_type == DATA_TYPE_STIX_ALL_TECH_MOBILE:
stix_attack_data = mitre.get_mobile_techniques()
attack_data = _convert_stix_techniques_to_dict(mitre, stix_attack_data)
elif data_type == DATA_TYPE_CUSTOM_TECH_BY_GROUP:
# First we need to know which technique references (STIX Object type 'attack-pattern') we have for all
# groups. This results in a dict: {group_id: Gxxxx, technique_ref/attack-pattern_ref: ...}
groups = load_attack_data(DATA_TYPE_STIX_ALL_GROUPS)
relationships = load_attack_data(DATA_TYPE_STIX_ALL_RELATIONSHIPS)
all_groups_relationships = []
for g in groups:
for r in relationships:
if g['id'] == r['source_ref'] and r['relationship_type'] == 'uses' and \
r['target_ref'].startswith('attack-pattern--'):
# much more information on the group can be added. Only the minimal required data is now added.
all_groups_relationships.append(
{
'group_id': get_attack_id(g),
'name': g['name'],
'aliases': g.get('aliases', None),
'technique_ref': r['target_ref'],
'x_mitre_domains': g['x_mitre_domains'] if 'x_mitre_domains' in g.keys() else ['enterprise-attack']
})
# Now we start resolving this part of the dict created above: 'technique_ref/attack-pattern_ref'.
# and we add some more data to the final result.
all_group_use = []
techniques = load_attack_data(DATA_TYPE_STIX_ALL_TECH)
for gr in all_groups_relationships:
for t in techniques:
if t['id'] == gr['technique_ref']:
all_group_use.append(
{
'group_id': gr['group_id'],
'name': gr['name'],
'aliases': gr['aliases'],
'technique_id': get_attack_id(t),
'x_mitre_platforms': t.get('x_mitre_platforms', None),
'x_mitre_domains': gr['x_mitre_domains'],
'matrix': t['external_references'][0]['source_name']
})
attack_data = all_group_use
elif data_type == DATA_TYPE_CUSTOM_TECH_IN_CAMPAIGN:
# First we need to know which technique references (STIX Object type 'attack-pattern') we have for all
# campaigns. This results in a dict: {campaign_id: Cxxxx, technique_ref/attack-pattern_ref: ...}
campaigns = load_attack_data(DATA_TYPE_STIX_ALL_CAMPAIGNS)
relationships = load_attack_data(DATA_TYPE_STIX_ALL_RELATIONSHIPS)
all_campaigns_relationships = []
for c in campaigns:
for r in relationships:
if c['id'] == r['source_ref'] and r['relationship_type'] == 'uses' and \
r['target_ref'].startswith('attack-pattern--'):
# more information on the campaign can be added. Only the minimal required data is added.
all_campaigns_relationships.append(
{
'campaign_id': get_attack_id(c),
'name': c['name'],
'technique_ref': r['target_ref'],
'x_mitre_domains': c['x_mitre_domains'] if 'x_mitre_domains' in c.keys() else ['enterprise-attack']
})
# Now we start resolving this part of the dict created above: 'technique_ref/attack-pattern_ref'.
# and we add some more data to the final result.
all_campaigns_use = []
techniques = load_attack_data(DATA_TYPE_STIX_ALL_TECH)
for cr in all_campaigns_relationships:
for t in techniques:
if t['id'] == cr['technique_ref']:
all_campaigns_use.append(
{
'campaign_id': cr['campaign_id'],
'name': cr['name'],
'technique_id': get_attack_id(t),
'x_mitre_platforms': t.get('x_mitre_platforms', None),
'x_mitre_domains': cr['x_mitre_domains'],
'matrix': t['external_references'][0]['source_name']
})
attack_data = all_campaigns_use
elif data_type == DATA_TYPE_STIX_ALL_TECH:
stix_attack_data = mitre.get_techniques()
attack_data = _convert_stix_techniques_to_dict(mitre, stix_attack_data)
elif data_type == DATA_TYPE_STIX_ALL_GROUPS:
# Fetch groups from each matrix separately and then merge them. This is because STIX will deduplicate items with the
# same ID and modification date. Few groups are in multiple matrices and will end up in STIX collection as just one
# item with only one of the matrices mentioned in x_mitre_domains field.
groups_enterprise = mitre.TC_ENTERPRISE_SOURCE.query(Filter("type", "=", "intrusion-set"))
groups_ics = mitre.TC_ICS_SOURCE.query(Filter("type", "=", "intrusion-set"))
groups_mobile = mitre.TC_MOBILE_SOURCE.query(Filter("type", "=", "intrusion-set"))
# Fix the x_mitre_domains field for ICS and Mobile. This information is not properly delivered when using the TAXII server.
# TODO: remove these lines when MITRE fixed this.
for g in groups_ics:
g['x_mitre_domains'].clear()
g['x_mitre_domains'].append('ics-attack')
for g in groups_mobile:
g['x_mitre_domains'].clear()
g['x_mitre_domains'].append('mobile-attack')
# Combine groups from all matrices together:
attack_data = _convert_stix_groups_to_dict(groups_enterprise + groups_ics + groups_mobile)
elif data_type == DATA_TYPE_STIX_ALL_CAMPAIGNS:
campaigns = mitre.get_campaigns()
attack_data = _convert_stix_campaigns_to_dict(campaigns)
elif data_type == DATA_TYPE_STIX_ALL_SOFTWARE:
attack_data = mitre.get_software()
elif data_type == DATA_TYPE_CUSTOM_TECH_BY_SOFTWARE:
# First we need to know which technique references (STIX Object type 'attack-pattern') we have for all software
# This results in a dict: {software_id: Sxxxx, technique_ref/attack-pattern_ref: ...}
software = load_attack_data(DATA_TYPE_STIX_ALL_SOFTWARE)
relationships = load_attack_data(DATA_TYPE_STIX_ALL_RELATIONSHIPS)
all_software_relationships = []
for s in software:
for r in relationships:
if s['id'] == r['source_ref'] and r['relationship_type'] == 'uses' and \
r['target_ref'].startswith('attack-pattern--'):
# much more information (e.g. description, aliases, platform) on the software can be added to the
# dict if necessary. Only the minimal required data is now added.
all_software_relationships.append({'software_id': get_attack_id(s), 'technique_ref': r['target_ref']})
# Now we start resolving this part of the dict created above: 'technique_ref/attack-pattern_ref'
techniques = load_attack_data(DATA_TYPE_STIX_ALL_TECH)
all_software_use = []
for sr in all_software_relationships:
for t in techniques:
if t['id'] == sr['technique_ref']:
# much more information on the technique can be added to the dict. Only the minimal required data
# is now added (i.e. resolving the technique ref to an actual ATT&CK ID)
all_software_use.append({'software_id': sr['software_id'], 'technique_id': get_attack_id(t)})
attack_data = all_software_use
elif data_type == DATA_TYPE_CUSTOM_SOFTWARE_BY_GROUP:
# First we need to know which software references (STIX Object type 'malware' or 'tool') we have for all
# groups. This results in a dict: {group_id: Gxxxx, software_ref/malware-tool_ref: ...}
groups = load_attack_data(DATA_TYPE_STIX_ALL_GROUPS)
relationships = load_attack_data(DATA_TYPE_STIX_ALL_RELATIONSHIPS)
all_groups_relationships = []
for g in groups:
for r in relationships:
if g['id'] == r['source_ref'] and r['relationship_type'] == 'uses' and \
(r['target_ref'].startswith('tool--') or r['target_ref'].startswith('malware--')):
# much more information on the group can be added. Only the minimal required data is now added.
all_groups_relationships.append(
{
'group_id': get_attack_id(g),
'name': g['name'],
'aliases': g.get('aliases', None),
'software_ref': r['target_ref'],
'x_mitre_domains': g['x_mitre_domains']
})
# Now we start resolving this part of the dict created above: 'software_ref/malware-tool_ref'.
# and we add some more data to the final result.
all_group_use = []
software = load_attack_data(DATA_TYPE_STIX_ALL_SOFTWARE)
for gr in all_groups_relationships:
for s in software:
if s['id'] == gr['software_ref']:
all_group_use.append(
{
'group_id': gr['group_id'],
'name': gr['name'],
'aliases': gr['aliases'],
'software_id': get_attack_id(s),
'x_mitre_platforms': s.get('x_mitre_platforms', None),
'x_mitre_domains': gr['x_mitre_domains'],
'matrix': s['external_references'][0]['source_name']
})
attack_data = all_group_use
elif data_type == DATA_TYPE_CUSTOM_SOFTWARE_IN_CAMPAIGN:
# First we need to know which software references (STIX Object type 'malware' or 'tool') we have for all
# campaigns. This results in a dict: {campaign_id: Cxxxx, software_ref/malware-tool_ref: ...}
campaigns = load_attack_data(DATA_TYPE_STIX_ALL_CAMPAIGNS)
relationships = load_attack_data(DATA_TYPE_STIX_ALL_RELATIONSHIPS)
all_campaigns_relationships = []
for campaign in campaigns:
for r in relationships:
if campaign['id'] == r['source_ref'] and r['relationship_type'] == 'uses' and \
(r['target_ref'].startswith('tool--') or r['target_ref'].startswith('malware--')):
all_campaigns_relationships.append(
{
'campaign_id': get_attack_id(campaign),
'name': campaign['name'],
'software_ref': r['target_ref'],
'x_mitre_domains': campaign['x_mitre_domains']
})
# Now we start resolving this part of the dict created above: 'software_ref/malware-tool_ref'.
# and we add some more data to the final result.
all_campaign_use = []
software = load_attack_data(DATA_TYPE_STIX_ALL_SOFTWARE)
for campaign in all_campaigns_relationships:
for s in software:
if s['id'] == campaign['software_ref']:
all_campaign_use.append(
{
'campaign_id': campaign['campaign_id'],
'name': campaign['name'],
'software_id': get_attack_id(s),
'x_mitre_platforms': s.get('x_mitre_platforms', None),
'x_mitre_domains': campaign['x_mitre_domains'],
'matrix': s['external_references'][0]['source_name']
})
attack_data = all_campaign_use
elif data_type == DATA_TYPE_STIX_ALL_ENTERPRISE_MITIGATIONS:
attack_data = mitre.get_enterprise_mitigations()
attack_data = mitre.remove_revoked_deprecated(attack_data)
elif data_type == DATA_TYPE_STIX_ALL_MOBILE_MITIGATIONS:
attack_data = mitre.get_mobile_mitigations()
attack_data = mitre.remove_revoked_deprecated(attack_data)
elif data_type == DATA_TYPE_STIX_ALL_ICS_MITIGATIONS:
attack_data = mitre.get_ics_mitigations()
attack_data = mitre.remove_revoked_deprecated(attack_data)
# Only use cache when using online TAXII server:
if local_stix_path is None:
_save_attack_data(attack_data, "cache/" + data_type)
return attack_data
def init_yaml():
"""
Initialize ruamel.yaml with the correct settings
:return: a ruamel.yaml object
"""
_yaml = YAML()
_yaml.Representer.ignore_aliases = lambda *args: True # disable anchors/aliases
return _yaml
def get_attack_id(stix_obj):
"""
Get the Technique, Group or Software ID from the STIX object
:param stix_obj: STIX object (Technique, Software or Group)
:return: ATT&CK ID
"""
for ext_ref in stix_obj['external_references']:
if ext_ref['source_name'] in ['mitre-attack', 'mitre-mobile-attack', 'mitre-ics-attack']:
return ext_ref['external_id']
def get_tactics(technique):
"""
Get all tactics from a given technique
:param technique: technique STIX object
:return: list with tactics
"""
tactics = []
if 'kill_chain_phases' in technique:
for phase in technique['kill_chain_phases']:
tactics.append(phase['phase_name'])
return tactics
def get_technique(techniques, technique_id):
"""
Generic function to lookup a specific technique_id in a list of dictionaries with techniques.
:param techniques: list with all techniques
:param technique_id: technique_id to look for
:return: the technique you're searching for. None if not found.
"""
for tech in techniques:
if technique_id == get_attack_id(tech):
return tech
return None
def ask_yes_no(question):
"""
Ask the user to a question that needs to be answered with yes or no.
:param question: The question to be asked
:return: boolean value indicating a yes (True) or no (False0
"""
yes_no = ''
while not re.match('^(y|yes|n|no)$', yes_no, re.IGNORECASE):
yes_no = input(question + '\n >> y(yes) / n(no): ')
print('')
if re.match('^(y|yes)$', yes_no, re.IGNORECASE):
return True
else:
return False
def ask_multiple_choice(question, list_answers):
"""
Ask a multiple choice question.
:param question: the question to ask
:param list_answers: a list of answer
:return: the answer
"""
answer = ''
answers = ''
x = 1
for a in list_answers:
a = a.replace('\n', '\n ')
answers += ' ' + str(x) + ') ' + a + '\n'
x += 1
# noinspection Annotator
while not re.match('(^[1-' + str(len(list_answers)) + ']{1}$)', answer):
print(question)
print(answers)
answer = input(' >> ')
print('')
return int(answer)
def fix_date_and_remove_null(yaml_file, date, input_type='ruamel'):
"""
Remove the single quotes around the date key-value pair in the provided yaml_file and remove any 'null' values
:param yaml_file: ruamel.yaml instance or location of YAML file
:param date: string date value (e.g. 2019-01-01)
:param input_type: input type can be a ruamel.yaml instance or list
:return: YAML file lines in a list
"""
_yaml = init_yaml()
if input_type == 'ruamel':
# ruamel does not support output to a variable. Therefore we make use of StringIO.
file = StringIO()
_yaml.dump(yaml_file, file)
file.seek(0)
new_lines = file.readlines()
elif input_type == 'list':
new_lines = yaml_file
elif input_type == 'file':
new_lines = yaml_file.readlines()
fixed_lines = [l.replace('\'' + str(date) + '\'', str(date)).replace('null', '')
if REGEX_YAML_DATE.match(l) else
l.replace('null', '') for l in new_lines]
return fixed_lines
def get_latest_score_obj(yaml_object):
"""
Get the the score object in the score_logbook by date
:param yaml_object: a detection or visibility YAML object
:return: the latest score object
"""
if not isinstance(yaml_object['score_logbook'], list):
yaml_object['score_logbook'] = [yaml_object['score_logbook']]
if len(yaml_object['score_logbook']) > 0 and 'date' in yaml_object['score_logbook'][0]:
# for some weird reason 'sorted()' provides inconsistent results
newest_score_obj = None
newest_date = None
for score_obj in yaml_object['score_logbook']:
score_obj_date = score_obj['date']
if not newest_score_obj or (score_obj_date and score_obj_date > newest_date):
newest_date = score_obj_date
newest_score_obj = score_obj
return newest_score_obj
else:
return None
def get_latest_comment(yaml_object):
"""
Return the latest comment present in the score_logbook
:param yaml_object: a detection or visibility YAML object
:return: comment
"""
score_obj = get_latest_score_obj(yaml_object)
if score_obj:
if score_obj['comment'] == '' or not score_obj['comment']:
return ''
else:
return score_obj['comment']
else:
return ''
def get_latest_date(yaml_object):
"""
Return the latest date present in the score_logbook
:param yaml_object: a detection or visibility YAML object
:return: date as a datetime object or None
"""
score_obj = get_latest_score_obj(yaml_object)
if score_obj:
return score_obj['date']
else:
return None
def get_latest_auto_generated(yaml_object):
"""
Return the latest auto_generated value present in the score_logbook
:param yaml_object: a visibility YAML object
:return: True or False
"""
score_obj = get_latest_score_obj(yaml_object)
if score_obj:
if 'auto_generated' in score_obj:
return score_obj['auto_generated']
else:
return False
else:
return False
def get_latest_score(yaml_object):
"""
Return the latest score present in the score_logbook
:param yaml_object: a detection or visibility YAML object
:return: score as an integer or None
"""
score_obj = get_latest_score_obj(yaml_object)
if score_obj:
return score_obj['score']
else:
return None
def platform_to_name(platform, domain, separator='-'):
"""
Makes a filename friendly version of the platform parameter which can be a string or list.
:param platform: the platform variable (a string or a list)
:param domain: the specified domain
:param separator: a string value that separates multiple platforms. Default is '-'
:return: a filename friendly representation of the value of platform
"""
platforms = PLATFORMS_ENTERPRISE if domain == 'enterprise-attack' else PLATFORMS_ICS if domain == 'ics-attack' else PLATFORMS_MOBILE
if set(platform) == set(platforms.values()) or platform == 'all' or 'all' in platform:
return 'all'
elif isinstance(platform, list):
return separator.join(sorted(platform))
else:
return ''
def get_applicable_data_sources_platform(platforms, domain):
"""
Get the applicable ATT&CK data sources for the provided platform(s)
:param platforms: the ATT&CK platform(s)
:param domain: the specified domain
:return: a list of applicable ATT&CK data sources
"""
applicable_data_sources = set()
data_sources = DATA_SOURCES_ENTERPRISE if domain == 'enterprise-attack' else DATA_SOURCES_ICS if domain == 'ics-attack' else DATA_SOURCES_MOBILE
for p in platforms:
applicable_data_sources.update(data_sources[p])
return list(applicable_data_sources)
def get_applicable_dettect_data_sources_platform(platforms, domain):
"""
Get the applicable DeTT&CT data sources for the provided platform(s)
:param platforms: the ATT&CK platform(s)
:param domain: the specified domain
:return: a list of applicable ATT&CK data sources
"""
applicable_dettect_data_sources = set()
dettect_data_sources = DETTECT_DATA_SOURCES_PLATFORMS_ENTERPRISE if domain == 'enterprise-attack' else DETTECT_DATA_SOURCES_PLATFORMS_ICS if domain == 'ics-attack' else DETTECT_DATA_SOURCES_PLATFORMS_MOBILE
for p in platforms:
applicable_dettect_data_sources.update(dettect_data_sources[p])
return list(applicable_dettect_data_sources)
def get_applicable_data_sources_technique(technique_data_sources, platform_applicable_data_sources):
"""
Get the applicable ATT&CK data sources for the provided technique's data sources (for which the source is ATT&CK CTI)
:param technique_data_sources: the ATT&CK technique's data sources
:param platform_applicable_data_sources: a list of applicable ATT&CK data sources based on 'DATA_SOURCES'
:return: a list of applicable data sources
"""
applicable_data_sources = set()
for ds in technique_data_sources:
if ds in platform_applicable_data_sources:
applicable_data_sources.add(ds)
return list(applicable_data_sources)
def get_applicable_dettect_data_sources_technique(technique_dettect_data_sources, platform_applicable_dettect_data_sources):
"""
Get the applicable DeTT&CT data sources for the provided technique's DeTT&CT data sources.
:param technique_data_sources: the ATT&CK technique's DeTT&CT data sources
:param platform_applicable_data_sources: a list of applicable DeTT&CT data sources based on 'DETTECT_DATA_SOURCES_PLATFORMS'
:return: a list of applicable data sources
"""
applicable_dettect_data_sources = set()
for ds in technique_dettect_data_sources:
if ds in platform_applicable_dettect_data_sources:
applicable_dettect_data_sources.add(ds)
return list(applicable_dettect_data_sources)
def _check_data_quality(data_quality, filter_empty_scores):
"""
Checks if at least one of the data quality dimensions is greater than 0, and therefore is considered to be available.
:param data_quality: data source data quality YAML object.
:param filter_empty_scores: set the data source as available if set to 'False' despite its data quality.
:return: True if the data source is available otherwise False.
"""
if not filter_empty_scores:
return True
elif data_quality['device_completeness'] > 0 or data_quality['data_field_completeness'] > 0 or \
data_quality['timeliness'] > 0 or data_quality['consistency'] > 0 or data_quality['retention'] > 0:
return True
def load_data_sources(file, filter_empty_scores=True):
"""
Loads the data sources (including all properties) from the given YAML file.
:param file: the file location of the YAML file containing the data sources administration or a dict.
:param filter_empty_scores: include all data source details objects if set to False despite the data quality.
:return: dictionary with data sources, name, systems and exceptions list.
"""
my_data_sources = {}
if isinstance(file, dict):
# file is a dict created due to the use of an EQL query by the user
yaml_content = file
else:
# file is a file location on disk
_yaml = init_yaml()
with open(file, 'r') as yaml_file:
yaml_content = _yaml.load(yaml_file)
# we have todo this in two phases to bring the 'systems' kv-pair applicable_to values in sync with the data sources details object's applicable_to values
# phase 1:
# - keep data sources which are enabled (DQ check)
# - add the data source to a dictionary we can iterate over more easily (my_data_sources)
for ds_global in yaml_content['data_sources']:
if isinstance(ds_global['data_source'], dict): # There is just one data source entry
if _check_data_quality(ds_global['data_source']['data_quality'], filter_empty_scores):
_add_entry_to_list_in_dictionary(my_data_sources, ds_global['data_source_name'], 'data_source', ds_global['data_source'])
elif isinstance(ds_global['data_source'], list): # There are multiple data source entries
for ds_details in ds_global['data_source']:
if _check_data_quality(ds_details['data_quality'], filter_empty_scores):
_add_entry_to_list_in_dictionary(my_data_sources, ds_global['data_source_name'], 'data_source', ds_details)
# phase 2:
# - put all system's applicable_to values into a list (all_systems_applicable_to) and only keep:
# * not equal to 'all' (because it's a hardcoded value which translates to all applicable_to values from the data source details objects)
# - iterate over all data sources details objects and replace 'all' with all_systems_applicable_to
systems = yaml_content['systems']
systems = [k for k in systems if k['applicable_to'].lower() != 'all']
all_systems_applicable_to = [k['applicable_to'] for k in systems]
for k, v in my_data_sources.items():
for ds_detail in v['data_source']:
if 'all' in [a.lower() for a in ds_detail['applicable_to'] if a is not None]:
ds_detail['applicable_to'] = all_systems_applicable_to
ds_detail = set_yaml_dv_comments(ds_detail)
domain = 'enterprise-attack' if 'domain' not in yaml_content.keys() else yaml_content['domain']
# make sure the platform values are compliant (including casing) with the ATT&CK platforms
platforms = PLATFORMS_ENTERPRISE if domain == 'enterprise-attack' else PLATFORMS_ICS if domain == 'ics-attack' else PLATFORMS_MOBILE
for s in systems:
s['platform'] = [p.lower() for p in s['platform'] if p is not None]
if 'all' in s['platform']:
s['platform'] = list(platforms.values())
else:
valid_platform_list = []
for p in s['platform']:
if p in platforms.keys():
valid_platform_list.append(platforms[p])
s['platform'] = valid_platform_list
exceptions = []
if 'exceptions' in yaml_content:
exceptions = [t['technique_id'].upper() for t in yaml_content['exceptions'] if t['technique_id'] is not None]
name = yaml_content['name']
return my_data_sources, name, systems, exceptions, domain
def load_techniques(file):
"""
Loads the techniques (including detection and visibility properties).
:param file: the file location of the YAML file or a dict containing the techniques administration
:return: dictionary with techniques (incl. properties), name and platform
"""
my_techniques = {}
if isinstance(file, dict):
# file is a dict and created due to the use of an EQL query by the user
yaml_content = file
else:
# file is a file location on disk
_yaml = init_yaml()
with open(file, 'r') as yaml_file:
yaml_content = _yaml.load(yaml_file)
yaml_content = _traverse_modify_date(yaml_content)
for d in yaml_content['techniques']:
if 'detection' in d:
# Add detection items:
if isinstance(d['detection'], dict): # There is just one detection entry
d['detection'] = set_yaml_dv_comments(d['detection'])
_add_entry_to_list_in_dictionary(my_techniques, d['technique_id'], 'detection', d['detection'])
elif isinstance(d['detection'], list): # There are multiple detection entries
for de in d['detection']:
de = set_yaml_dv_comments(de)
_add_entry_to_list_in_dictionary(my_techniques, d['technique_id'], 'detection', de)
if 'visibility' in d:
# Add visibility items
if isinstance(d['visibility'], dict): # There is just one visibility entry
d['visibility'] = set_yaml_dv_comments(d['visibility'])
_add_entry_to_list_in_dictionary(my_techniques, d['technique_id'], 'visibility', d['visibility'])
elif isinstance(d['visibility'], list): # There are multiple visibility entries
for de in d['visibility']:
de = set_yaml_dv_comments(de)
_add_entry_to_list_in_dictionary(my_techniques, d['technique_id'], 'visibility', de)
name = yaml_content['name']
domain = 'enterprise-attack' if 'domain' not in yaml_content.keys() else yaml_content['domain']
platform = get_platform_from_yaml(yaml_content, domain)
return my_techniques, name, platform, domain
def calculate_score(list_yaml_objects, zero_value=0):
"""
Calculates the average score in the given list which may contain multiple detection or visibility dictionaries
:param list_yaml_objects: list of detection or visibility objects
:param zero_value: the value when no scores are there, default 0
:return: average score
"""
avg_score = 0
number = 0
for v in list_yaml_objects:
score = get_latest_score(v)
if score is not None and score >= 0:
avg_score += score
number += 1
avg_score = int(round(avg_score / number, 0) if number > 0 else zero_value)
return avg_score
def _add_entry_to_list_in_dictionary(dictionary, key_dict, key_list, entry):
"""
Ensures a list will be created if it doesn't exist in the given dict[key_dict][key_list] and adds the entry to the
list. If the dict[key_dict] doesn't exist yet, it will be created.
:param dictionary: the dictionary
:param key_dict: the key name in de main dict
:param key_list: the key name where the list in the dictionary resides
:param entry: the entry to add to the list
:return:
"""
if key_dict not in dictionary.keys():
dictionary[key_dict] = {}
if key_list not in dictionary[key_dict].keys():
dictionary[key_dict][key_list] = []
dictionary[key_dict][key_list].append(entry)
def set_yaml_dv_comments(yaml_object):
"""
Set all comments in the detection, visibility or data source details YAML object when the 'comment' key-value pair is missing or is None.
This gives the user the flexibility to have YAML files with missing 'comment' key-value pairs.
:param yaml_object: detection or visibility object
:return: detection or visibility object for which empty comments are filled with an empty string
"""
yaml_object['comment'] = yaml_object.get('comment', '')
if yaml_object['comment'] is None:
yaml_object['comment'] = ''
if 'score_logbook' in yaml_object:
for score_obj in yaml_object['score_logbook']:
score_obj['comment'] = score_obj.get('comment', '')
if score_obj['comment'] is None:
score_obj['comment'] = ''
return yaml_object
def traverse_dict(obj, callback=None):
"""
Traverse all items in a dictionary
:param obj: dictionary, list or value
:param callback: a function that will be called to modify a value
:return: value or call callback function
"""
if isinstance(obj, dict):
value = {k: traverse_dict(v, callback)
for k, v in obj.items()}
elif isinstance(obj, list):
value = [traverse_dict(elem, callback)
for elem in obj]
else:
value = obj
if callback is None: # if a callback is provided, call it to get the new value
return value
else:
return callback(value)
def _traverse_modify_date(obj):
"""
Make sure that all dates are of the type datetime.date
:param obj: dictionary
:return: function call
"""
def _transformer(value):
if type(value) == dt:
value = value.date()
elif type(value) == ruamelTimeStamp:
value = ruamelTimeStamp.date(value)
return value
return traverse_dict(obj, callback=_transformer)
def _check_file_type(filename, file_type=None):
"""
Check if the provided YAML file has the key 'file_type' and possible if that key matches a specific value.
:param filename: path to a YAML file
:param file_type: value to check against the 'file_type' key in the YAML file
:return: the file_type if present, else None is returned
"""
if not os.path.exists(filename):
print('[!] File: \'' + filename + '\' does not exist')
return None
_yaml = init_yaml()
with open(filename, 'r') as yaml_file:
try:
yaml_content = _yaml.load(yaml_file)
except Exception as e:
print('[!] File: \'' + filename + '\' is not a valid YAML file.')
print(' ' + str(e)) # print more detailed error information to help the user in fixing the error.
return None
# This check is performed because a text file will also be considered to be valid YAML. But, we are using
# key-value pairs within the YAML files.
if not hasattr(yaml_content, 'keys'):
print('[!] File: \'' + filename + '\' is not a valid YAML file.')
return None
if 'file_type' not in yaml_content.keys():
print('[!] File: \'' + filename + '\' does not contain a file_type key.')
return None
elif file_type:
if file_type != yaml_content['file_type']:
print('[!] File: \'' + filename + '\' is not a file type of: \'' + file_type + '\'')
return None
else:
return yaml_content
else:
return yaml_content
def _check_for_old_data_sources(filename):
"""
Check if the data source administration YAML file contains ATT&CK v8 data sources.
:param filename: path to data source YAML file
:return: True if no ATT&CK v8 data sources are found, else False is returned
"""
_yaml = init_yaml()
with open(filename, 'r') as yaml_file:
yaml_content = _yaml.load(yaml_file)
data_sources = set([ds['data_source_name'] for ds in yaml_content['data_sources']])
if data_sources.intersection(DATA_SOURCES_ATTACK_V8):
print('[!] File: \'' + filename + '\' needs to be manually updated to have the new ATT&CK v9 '
'data sources/data components as it currently contains ATT&CK v8 data sources.\n' ' Not having the new '
'data sources/data components will result in reduced functionality of DeTT&CT.')
return False
else:
return True
def check_file(filename, file_type=None, health_is_called=False):
"""
Calls four functions to perform the following checks: is the file a valid YAML file, needs the file to be upgraded,
or does the file contain errors.
:param filename: path to a YAML file
:param file_type: value to check against the 'file_type' key in the YAML file
:param health_is_called: boolean that specifies if detailed errors in the file will be printed by the function 'check_yaml_file_health'
:return: the file_type if present, else None is returned
"""
yaml_content = _check_file_type(filename, file_type)
# if the file is a valid YAML, continue. Else, return None
if yaml_content:
upgrade_yaml_file(filename, file_type, yaml_content['version'])
check_yaml_file_health(filename, file_type, health_is_called)
if file_type == FILE_TYPE_DATA_SOURCE_ADMINISTRATION:
if not _check_for_old_data_sources(filename):
return None