-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCGen.hs
514 lines (419 loc) · 15.4 KB
/
CGen.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
module CGen where
import Data.List
import Data.Maybe
import Data.Monoid
import qualified IR as I
import qualified CLang as C
import Common
import qualified Data.Map as M
import Control.Monad.State
import Control.Monad.Writer
import Control.Monad.Identity
bitsType_str = C.Custom "struct cmt_init"
bitsType = C.Custom "cmt_bits_t"
bitsType_ptr = C.Custom "cmt_bits_t*"
wordType = C.Custom "word_t"
c_assign l e = C.Expr $ C.BinOp C.Assign l e
c_call f a = C.Expr $ C.Call f a
-- Generate source file and header
cgen :: I.IR -> (C.Prog, C.Prog)
cgen ir = let (units, ()) = runGM (g_ir ir)
c = C.Prog { C.includes = ["stdbool", "stdlib", "stdio",
"stddef", "string", "stdarg"],
C.units = units
}
h = C.Prog { C.includes = ["stdbool"],
C.units = concat $ map header_unit units
}
in (c, h)
-- In 'extra' we keep those functions that are generated
-- despite not being an IR unit, like the implementations
-- for clusters.
data CGenState =
CGenState { globals :: [C.Decl],
extra :: [C.Unit],
buflit_counter :: Int,
cluster_counter :: Int,
clusters_generated :: M.Map (I.ClusterExpr, [Bool]) String
}
header_unit (C.Decl d) = []
header_unit (C.FunDef ft _) = if elem C.Static (C.mods ft)
then []
else [C.FunDecl ft]
-- Cemetery shouldn't generate any FunDecls on the source file
initState =
CGenState { globals = [],
extra = [],
buflit_counter = 0,
cluster_counter = 0,
clusters_generated = M.empty
}
type GM = StateT CGenState (
WriterT [C.Unit] (
Identity
))
add_gdecl :: C.Decl -> GM ()
add_gdecl d =
do s <- get
put (s { globals = globals s ++ [d]})
add_extra :: C.Unit -> GM ()
add_extra f =
do s <- get
put (s { extra = extra s ++ [f]})
add_cluster :: (I.ClusterExpr, [Bool]) -> String -> GM ()
add_cluster k v =
do s <- get
put (s { clusters_generated = M.insert k v (clusters_generated s)})
get_cluster_idx =
do s <- get
put (s { cluster_counter = cluster_counter s + 1 })
return (cluster_counter s)
fresh_buflit_counter =
do s <- get
put (s { buflit_counter = buflit_counter s + 1})
return (buflit_counter s)
sseq C.Skip r = r
sseq l C.Skip = l
sseq l r = C.Seq l r
sfold = foldl sseq C.Skip
runGM :: GM t -> ([C.Unit], t)
runGM m = let m' = runStateT m initState
m'' = runWriterT m'
((r, s), units) = runIdentity m''
gdecls = map C.Decl (globals s)
in (gdecls ++ extra s ++ units, r)
g_ir :: I.IR -> GM ()
g_ir p = do bs <- mapM g_unit p
return ()
g_unit :: I.Unit -> GM ()
g_unit (I.Decl d) =
do d' <- g_decl d
tell [C.Decl d']
g_unit (I.FunDef (I.Funtype { I.name = name,
I.args = args,
I.mods = mods,
I.ret = ret}) body) =
do c_args <- mapM g_arg args
c_ret <- g_type ret
c_body <- g_body body
c_mods <- mapM g_mods mods
let ft = C.Funtype { C.name = name, C.args = c_args,
C.mods = c_mods, C.ret = c_ret }
tell [C.FunDef ft c_body]
g_mods I.Static = do return C.Static
g_arg :: (String, I.Type) -> GM (String, C.Type)
g_arg (n, t) =
do t' <- g_type t
return (n, t')
g_body :: I.Block -> GM C.Block
g_body (d, s) =
do d' <- mapM g_decl d
s' <- g_stmt s
return (d', s')
g_decl :: I.Decl -> GM C.Decl
g_decl (I.DeclLocal (I.Temp i) t) =
do let v = "t" ++ show i
tt <- g_type t
return $ C.VarDecl v tt Nothing []
g_decl (I.DeclLocal (I.LVar n) t) =
do tt <- g_type t
return $ C.VarDecl n tt Nothing []
g_decl (I.DeclGlobal n t e) =
do tt <- g_type t
e_c <- g_expr e
return $ C.VarDecl n tt (Just e_c) []
zero_bits (I.ConstBits [] (I.ConstInt 0)) = True
zero_bits _ = False
g_stmt :: I.Stmt -> GM C.Stmt
g_stmt (I.Seq l r) =
do ll <- g_stmt l
rr <- g_stmt r
return $ sseq ll rr
g_stmt I.Skip =
do return C.Skip
-- Special handling for array assignments, since C doesn't
-- provide an array assignment
g_stmt (I.Assign lv (I.Arr es)) | all zero_bits es =
do lv' <- g_lvalue lv
let n = length es
return $ (c_call "__cmt_init_bitarr" [C.LV lv', C.ConstInt n])
g_stmt (I.Assign lv (I.Arr es)) =
do let a i = I.Assign (I.Access lv (I.ConstInt i)) (es !! i)
ss <- mapM (g_stmt.a) [0..length es - 1]
return $ sfold ss
g_stmt (I.Assign lv e) =
do c_e <- g_expr e
c_lv <- g_lvalue lv
return (C.Expr $ C.BinOp C.Assign (C.LV c_lv) c_e)
g_stmt (I.If c t e) =
do c_c <- g_expr c
c_t <- g_body t
c_e <- g_body e
return (C.If c_c c_t c_e)
g_stmt (I.Return e) =
do c_e <- g_expr e
return (C.Return c_e)
g_stmt (I.For lv fr to b) =
do i <- g_lvalue lv
f <- g_expr fr
t <- g_expr to
let init = C.BinOp C.Assign (C.LV i) f
let cond = C.BinOp C.Le (C.LV i) t
let inc = C.BinOp C.Assign (C.LV i)
(C.BinOp C.Plus (C.LV i) (C.ConstInt 1))
body <- g_body b
return $ C.For init cond inc body
g_stmt (I.Error s) =
do let c = C.Call "fprintf" [C.LV (C.LVar "stderr"),
C.ConstStr $ "Cemetery error: " ++ s]
let a = C.Call "abort" []
return (C.Seq (C.Expr c) (C.Expr a))
g_stmt (I.Free lvs) =
do es <- mapM g_free_one lvs
return (sfold es)
g_stmt (I.FreeArr [a] l) =
do a' <- g_lvalue a
return (C.Expr (C.Call "__cmt_free_bitarr" [C.LV a', C.ConstInt l]))
g_free_one l =
do l' <- g_lvalue l
return $ C.Expr $ C.Call "cmt_free" [C.LV l']
g_expr :: I.Expr -> GM C.Expr
g_expr (I.ConstInt i) =
do return $ C.ConstInt i
g_expr (I.ConstBool b) =
do return $ C.ConstBool b
g_expr (I.BinOp op l r) =
do ll <- g_expr l
rr <- g_expr r
g_binop op ll rr
g_expr (I.IPOp op b s) =
do bb <- g_lvalue b
ss <- g_expr s
g_inplaceop op bb ss
-- Special case for inequalities
g_expr (I.UnOp I.Not (I.BinOp I.Eq l r)) =
do ll <- g_expr l
rr <- g_expr r
return $ C.BinOp C.Neq ll rr
g_expr (I.UnOp op l) =
do ll <- g_expr l
g_unop op ll
g_expr (I.LV lv) =
do lv_c <- g_lvalue lv
return $ C.LV lv_c
g_expr (I.Call cc args) =
do c_args <- mapM g_expr args
let f_name = case cc of
I.LVar n -> n
I.Builtin b -> builtin_name b
return $ C.Call f_name c_args
g_expr (I.Arr es) =
do es' <- mapM g_expr es
return $ C.Arr es'
g_expr (I.Slice a f t) =
do aa <- g_lvalue a
ff <- g_expr f
tt <- g_expr t
return $ C.Call "__cmt_slice" [C.LV aa, ff, tt]
g_expr (I.ConstBits b l) | all (==0) b =
do l' <- g_expr l
return $ C.Call "__cmt_zero" [l']
g_expr (I.ConstBits b l) =
do name <- g_const_bits b l
l' <- g_expr l
let p = C.UnOp C.Address (C.LV (C.LVar name))
return $ C.Call "__cmt_init" [p, l']
-- "Copy" is implemented as a function call.
g_expr (I.Copy lv) =
g_expr (I.Call (I.LVar "__cmt_copy") [I.LV lv])
-- optimize simple clusters
g_expr (I.Cluster (I.CBinOp op (I.CArg m) (I.CArg n)) as)
| all not (map snd as) =
do l <- g_lvalue (fst $ as!!m)
r <- g_lvalue (fst $ as!!n)
g_binop op (C.LV l) (C.LV r)
g_expr (I.Cluster (I.CUnOp op (I.CArg n)) as)
| all not (map snd as) =
do e <- g_lvalue (fst $ as!!n)
g_unop op (C.LV e)
g_expr (I.Cluster e as) =
do n <- reg_cluster e (map snd as) (length as)
as' <- mapM g_lvalue (map fst as)
return $ C.Call n (map C.LV as')
reg_cluster e fs n =
do s <- get
let m = clusters_generated s
case M.lookup (e,fs) m of
Just f -> return f
Nothing -> do c@(C.FunDef ft _) <- make_cluster e fs n
add_extra c
add_cluster (e,fs) (C.name ft)
return (C.name ft)
g_const_bits b l =
do c <- fresh_buflit_counter
let name = "__cmt_buf_literal_" ++ show c
let arr = map C.ConstInt (reverse b)
let carr = C.Arr arr
let str = C.StructVal [("data", carr), ("length", C.ConstInt (length b))]
add_gdecl (C.VarDecl name bitsType_str (Just str) [C.Static, C.Const])
return name
g_type I.Int = do return C.Int
g_type I.Bool = do return C.Bool
g_type I.Bits = do return bitsType
g_type (I.ArrT t l) =
do t' <- g_type t
return (C.ArrT t' l)
g_binop I.Plus l r = do return $ C.BinOp C.Plus l r
g_binop I.Minus l r = do return $ C.BinOp C.Minus l r
g_binop I.Div l r = do return $ C.BinOp C.Div l r
g_binop I.Prod l r = do return $ C.BinOp C.Prod l r
g_binop I.Eq l r = do return $ C.BinOp C.Eq l r
g_binop I.Mod l r = do return $ C.Call "__cmt_mod" [l, r]
g_binop I.And l r = do return $ C.BinOp C.And l r
g_binop I.Or l r = do return $ C.BinOp C.Or l r
g_binop I.Lt l r = do return $ C.BinOp C.Lt l r
g_binop I.Le l r = do return $ C.BinOp C.Le l r
g_binop I.Gt l r = do return $ C.BinOp C.Gt l r
g_binop I.Ge l r = do return $ C.BinOp C.Ge l r
g_binop I.Band l r = do return $ C.Call "__cmt_band" [l, r]
g_binop I.Bor l r = do return $ C.Call "__cmt_bor" [l, r]
g_binop I.Xor l r = do return $ C.Call "__cmt_xor" [l, r]
g_binop I.BConcat l r = do return $ C.Call "__cmt_bconcat" [l, r]
g_binop I.LShift l r = do return $ C.Call "__cmt_shiftl" [l, r]
g_binop I.RShift l r = do return $ C.Call "__cmt_shiftr" [l, r]
g_binop I.LRot l r = do return $ C.Call "__cmt_rotl" [l, r]
g_binop I.RRot l r = do return $ C.Call "__cmt_rotr" [l, r]
g_binop I.ModPlus l r = do return $ C.Call "__cmt_modplus" [l, r]
g_binop I.BitEq l r = do return $ C.Call "__cmt_eq" [l, r]
g_unop I.Neg e = do return $ C.UnOp C.NegateNum e
g_unop I.Not e = do return $ C.UnOp C.Not e
g_unop I.Bnot e = do return $ C.Call "__cmt_bnot" [e]
g_lvalue (I.LVar n) =
do return $ C.LVar n
g_lvalue (I.Temp i) =
do return $ C.LVar ("t" ++ show i)
g_lvalue (I.Access a i) =
do aa <- g_lvalue a
ii <- g_expr i
return $ C.Access (C.LV aa) ii
builtin_name I.Permute = "__cmt_permute"
builtin_name I.Length = "cmt_length"
builtin_name I.ToInt = "__cmt_toint"
builtin_name I.ToBits = "__cmt_tobits"
inplace_fun I.LRot = "__cmt_inplace_rotl"
inplace_fun I.RRot = "__cmt_inplace_rotr"
g_inplaceop op b s =
do let f = inplace_fun op
return $ C.Call f [C.LV b, s]
make_cluster e fs n =
do idx <- get_cluster_idx
let arg_name i = "a" ++ show i
let formals = zip (map arg_name [0..n-1]) (repeat bitsType)
let arg a = C.LV (C.LVar (arg_name a))
let length a = C.Call "cmt_length" [arg a]
let word a i = C.Call "get_word" [arg a, i]
let (ntemp, p, expr) = make_cluster_expr 0 (\i -> word i (C.LV (C.LVar "i"))) e
let temp_decl i = [C.VarDecl ("_mpt" ++ show i) wordType (Just (C.ConstInt 0)) [],
C.VarDecl ("_mpc" ++ show i) wordType Nothing []]
let temp_decls = concatMap temp_decl [1..ntemp]
let ast = cluster_ast arg fs expr n p temp_decls
let ft = C.Funtype { C.name = "__cmt_cluster_impl_" ++ show idx,
C.args = formals, C.mods = [C.Static],
C.ret = bitsType }
return $ C.FunDef ft ast
make_cluster_expr n word (I.CArg i) =
(n, C.Skip, word i)
make_cluster_expr n word (I.CBinOp I.ModPlus l r) =
let (nl, pl, l') = make_cluster_expr n word l
(nr, pr, r') = make_cluster_expr nl word r
nn = nr + 1
c = C.LV $ C.LVar $ "_mpt" ++ show nn
cc = C.LV $ C.LVar $ "_mpc" ++ show nn
-- add_carry is actually a macro, but who cares
p' = c_assign cc (C.Call "add_carry" [c, l', r'])
p = sfold [pl, pr, p']
in (nr + 1, p, cc)
make_cluster_expr n word (I.CBinOp op l r) =
let (nl, pl, l') = make_cluster_expr n word l
(nr, pr, r') = make_cluster_expr nl word r
op' = clustered_binop op
in (nr, C.Seq pl pr, C.BinOp op' l' r')
make_cluster_expr n word (I.CUnOp op e) =
let (ne, pe, e') = make_cluster_expr n word e
op' = clustered_unop op
in (ne, pe, C.UnOp op' e')
do_frees fs n =
let idxs = filter (fs!!) [0..n-1]
b i = C.LV (C.LVar ("a" ++ show i))
in map (\i -> c_call "cmt_free" [b i]) idxs
do_free_cond ret arg =
C.If (C.BinOp C.Neq arg ret)
([], C.Expr $ C.Call "cmt_free" [arg])
([], C.Skip)
var n = C.LV (C.LVar n)
-- for (i = lo; i < hi; i++) { body }
c_for i lo hi body =
C.For (C.BinOp C.Assign i lo)
(C.BinOp C.Lt i hi)
(C.BinOp C.Assign i (C.BinOp C.Plus i (C.ConstInt 1)))
body
cluster_skel decls prep body post =
([C.VarDecl "ret" bitsType Nothing [],
C.VarDecl "i" C.Int Nothing [],
C.VarDecl "l" C.Int Nothing []] ++
decls,
sfold [prep,
c_for (var "i") (C.ConstInt 0)
(C.BinOp C.Member (var "ret") (var "size")) body,
post,
c_call "__cmt_fixup" [var "ret"],
C.Return (var "ret")]
)
cluster_ast args fs res n p ds | all not fs =
let ret = var "ret"
l = var "l"
body = sfold [p, c_call "set_word" [ret, var "i", res]]
prep_one i = expand_len (args i) l
prep' = sfold $ map prep_one [0..n-1]
set_ret = c_assign ret (C.Call "__cmt_alloc" [l])
prep = sfold [c_assign l (C.ConstInt 0), prep', set_ret]
in cluster_skel ds prep ([], body) (sfold $ do_frees fs n)
cluster_ast args fs res n p ds =
let ret = var "ret"
l = var "l"
u = var "u"
length = var "length"
first_idx = fromJust $ elemIndex True fs
first = args first_idx
l_init = C.BinOp C.Member first length
prep_one a = sseq (expand_u a ret u)
(expand_len a l)
free_args = map args (elemIndices True fs)
prep' = sfold $ map prep_one (free_args \\ [first]) -- skip the one used for init
body = sfold [p, c_call "set_word" [ret, var "i", res]]
set_ret_1 = c_assign ret (C.Call "__cmt_resize_zero" [ret, l])
set_ret_2 = c_assign (C.UnOp C.Deref u) ret
u_decl = C.VarDecl "u" bitsType_ptr (Just (C.UnOp C.Address first)) []
frees = map (do_free_cond ret) free_args
prep = sfold [c_assign ret first,
c_assign l l_init,
prep',
set_ret_1,
set_ret_2]
in cluster_skel (u_decl:ds) prep ([],body) (sfold frees)
expand_len arg l =
let length = var "length"
in C.If (C.BinOp C.Gt (C.BinOp C.Member arg length) l)
([], c_assign l (C.BinOp C.Member arg length))
([], C.Skip)
expand_u arg ret u =
let length = var "length"
in C.If (C.BinOp C.Gt (C.BinOp C.Member arg length)
(C.BinOp C.Member ret length))
([], C.Seq (c_assign ret arg)
(c_assign u (C.UnOp C.Address arg)))
([], C.Skip)
clustered_binop I.Band = C.Band
clustered_binop I.Bor = C.Bor
clustered_binop I.Xor = C.Xor
clustered_unop I.Bnot = C.Bnot