对于模拟目标和硬件目标,可以在控制台上或 IDE 中生成 PX4。
PX4 源代码存储在 PX4/Firmware 存储库中的 GitHub 上。 若要在您的计算机上获得最新的版本,请在终端中输入以下命令:
初次编译之前,我们会使用终端环境编译一个模拟目标。 这使我们能够在进入真正的硬件和 IDE 之前验证系统设置。
The PX4 source code is stored on Github in the PX4/PX4-Autopilot repository. To get the very latest version onto your computer, enter the following command into a terminal:
git clone --recursive https://github.com/google/bloaty.git /tmp/bloaty \
&& cd /tmp/bloaty && cmake -GNinja . && ninja bloaty && cp bloaty /usr/local/bin/ \
&& rm -rf /tmp/*
:::note This is all you need to do just to build the latest code. GIT Examples > Contributing code to PX4 provides a lot more information about using git to contribute to PX4. :::
First we'll build a simulated target using a console environment. This allows us to validate the system setup before moving on to real hardware and an IDE.
导航到 Firmware 目录,并使用以下命令启动 jMAVSim:
make px4_sitl jmavsim
This will bring up the PX4 console below:
The drone can be flown by typing:
pxh> commander takeoff
无人机可以通过输入 commander land
着陆, 整个模拟可以通过 CTRL+C(或输入 shutdown
)来停止。
Flying the simulation with the ground control station is closer to the real operation of the vehicle. Click on a location in the map while the vehicle is flying (takeoff flight mode) and enable the slider. This will reposition the vehicle.
:::tip PX4 can be used with a number of other Simulators, including Gazebo Simulation and AirSim Simulation. These are also started with make - e.g.
-- Build files have been written to: /home/youruser/src/Firmware/build/px4_fmu-v4_default
[954/954] Creating /home/youruser/src/Firmware/build/px4_fmu-v4_default/px4_fmu-v4_default.px4
:::
运行成功后将输出类似结束:
下面的列表是常见飞控板的生成命令:
/data/ftp/internal_000/px4 -s /home/root/px4.config
:::note
In the example above the first part of the build target px4_fmu-v4
is the firmware for a particular flight controller hardware and default
is the configuration name (in this case the "default" configuration). The default
is optional so you could instead do:
make px4_fmu-v4_default upload
运行成功后将以如下结束:
下列飞控板有一些更复杂的构建和部署说明。
-- Build files have been written to: /home/youruser/src/PX4-Autopilot/build/px4_fmu-v4_default
[954/954] Creating /home/youruser/src/PX4-Autopilot/build/px4_fmu-v4_default/px4_fmu-v4_default.px4
以下是 Raspberry Pi 2/3 Navio2 构建目标的命令。
- 在 OS X 上,点击 ⌘-space 并搜索 “terminal” 。
- 在 Ubuntu 上,单击运行栏并搜索 “terminal”。
- 在 Windows 上,在“开始”菜单中找到 PX4 文件夹,然后单击 "PX4 Console"。
- HKPilot32:
make px4_fmu-v2_default
- Crazyflie 2.0:
make bitcraze_crazyflie_default
- Pixracer:
make px4_fmu-v4_default
- Pixhawk 3 Pro:
make px4_fmu-v4pro_default
- Pixhawk Mini:
make px4_fmu-v3_default
- Pixhawk 2:
make px4_fmu-v3_default
- Cube Yellow:
make hex_cube-yellow
- Cube Orange:
make hex_cube-orange
- mRo Pixhawk:
make px4_fmu-v3_default
(支持 2MB 闪存) - Pixfalcon:
make px4_fmu-v2_default
- Dropix:
make px4_fmu-v2_default
- MindPX/MindRacer:
make airmind_mindpx-v2_default
- mRo X-2.1:
make auav_x21_default
- Intel® Aero Ready to Fly Drone:
make intel_aerofc-v1_default
- Note 通常,
_default
后缀是可选的(即,您也可以使用make px4_fmu-v4
、make bitcraze_crazyflie
等)生成。 - Intel® Aero Ready to Fly Drone:
make intel_aerofc-v1_default
- Pixhawk 1:
make px4_fmu-v2_default
:::warning You must use a supported version of GCC to build this board (e.g. the same as used by CI/docker) or remove modules from the build. Building with an unsupported GCC may fail, as PX4 is close to the board's 1MB flash limit. ::: - Tip 这有助于分析(可能)导致
px4_fmu-v2_default
达到1MB 闪存限制的更改。
"PX4" 可执行文件位于目录 build/emlid_navio2_cross/ 中。 请确保您可以通过 ssh 连接到 RPi,请参阅 介绍如何访问您的 RPi。
Append upload
to the make commands to upload the compiled binary to the autopilot hardware via USB. For example
export AUTOPILOT_HOST=192.168.X.X
并上传:
Erase : [====================] 100.0%
Program: [====================] 100.0%
Verify : [====================] 100.0%
Rebooting.
[100%] Built target upload
然后,通过 ssh 连接并运行(以 root 身份):
The command below builds the target for Raspberry Pi 2/3 Navio2.
要在骁龙启动后立即运行 PX4,您可以将启动添加到 rc.local
:
sudo ./bin/px4 -s px4.config
成功生成,,然后执行 PX4 将会看到如下内容:
cd Firmware
make emlid_navio2_native # for native build
:::note
The value of the environment variable should be set before the build, or make upload
will fail to find your RPi.
:::
Parrot Bebop的支持还处于早期阶段,应当格外小心。
sudo ./build/emlid_navio2_native/px4 ./posix-configs/rpi/px4.config
下面的命令构建了 Linux 和 DSP 端的目标。 两个可执行文件都通过 muORB 进行通信。
Then upload it with:
<br />______ __ __ ___
| ___ \ \ \ / / / |
| |_/ / \ V / / /| |
| __/ / \ / /_| |
| | / /^\ \ \___ |
\_| \/ \/ |_/
px4 starting.
pxh>
到上一个终端并上传:
cd /home/linaro
./px4 mainapp.config
If you're building directly on the Pi, you will want the native build target (emlid_navio2_native).
cd PX4-Autopilot
make emlid_navio2_native # for native build
The "px4" executable file is in the directory build/emlid_navio2_native/. Run it directly with:
cd /home/pi && ./bin/px4 -d -s px4.config > px4.log
运行 DSP 调试监控器:
______ __ __ ___
| ___ \ \ \ / / / |
| |_/ / \ V / / /| |
| __/ / \ / /_| |
| | / /^\ \ \___ |
\_| \/ \/ |_/
px4 starting.
pxh>
注意:在 Mac 上可以使用 nano-dm。
adb shell
替换为:
- Aerotenna OcPoC-Zynq Mini Flight Controller > Building PX4 for OcPoC-Zynq
- OcPoC PX4 Setup Page (aerotenna.readme.io)
This section shows how to build for the Qualcomm Snapdragon Flight.
:::note If you use the Qualcomm ESC board (UART-based), then please follow their instructions here. If you use normal PWM-based ESCs boards, then you may continue to follow the instructions on this page. :::
The commands below build the targets for the Linux and the DSP side. Both executables communicate via muORB.
make atlflight_eagle_default upload
To load the SW on the device, connect via USB cable and make sure the device is booted. Run this in a new terminal window:
adb push ROMFS/px4fmu_common/mixers/quad_x.main.mix /usr/share/data/adsp
同步后重启:
${HEXAGON_SDK_ROOT}/tools/debug/mini-dm/Linux_Debug/mini-dm
Note that this will also copy (and overwrite) the two config files mainapp.config and px4.config to the device. Those files are stored under /usr/share/data/adsp/px4.config and /home/linaro/mainapp.config respectively if you want to edit the startup scripts directly on your vehicle.
该部分介绍 高通骁龙飞控 如何编译:
adb connect 192.168.42.1:9050
Run the DSP debug monitor:
adb shell
vim /etc/rc.local
{% youtube %}https://www.youtube.com/watch?v=Bkk8zttWxEI&rel=0&vq=hd720{% endyoutube %}
到上一个终端并上传:
adb pull /etc/rc.local
gedit rc.local
adb push rc.local /etc/rc.local
Note that the px4 will stop as soon as you disconnect the USB cable (or if you ssh session is disconnected). To fly, you should make the px4 auto-start after boot.
混频器现在需要手动复制:
运行 DSP 调试监控器:
adb shell sync
adb shell reboot
注意:在 Mac 上可以使用 nano-dm。
adb shell
chmod +x /etc/rc.local
继续使用 ADB shell 运行 PX4:
adb reboot
Make sure that the rc.local
is executable:
克隆固件存储库并导航到固件目录:
sh
git clone https://github.com/PX4/Firmware.git
cd Firmware
{% youtube %}https://www.youtube.com/watch?v=0pa0gS30zNw&rel=0&vq=hd720{% endyoutube %}
adb reboot
前面的部分演示了如何调用 make 来构建多个不同的目标、启动模拟器、使用 IDE 等。 本节介绍如何构造 make 选项以及如何查找可用选项。 Unless an expert in Eclipse or Sublime, their use is discouraged. Hardcore users can find an Eclipse project and a Sublime project in the source tree.
或者将文件复制到计算机,在本地编辑,然后将其复制回:
对于自动启动,请在 exit 0
之前添加以下行:
然后重新启动骁龙:
make [VENDOR_][MODEL][_VARIANT] [VIEWER_MODEL_DEBUGGER]
Then load the CMakeLists.txt in the root PX4-Autopilot folder via File > Open File or Project (Select the CMakeLists.txt file).
以下各节讨论了其他目标生成的问题(包括但不限于):
bloaty_compare_master
构建目标使您能够更好地了解更改对代码大小的影响。 当使用时,工具链会下载特定固件的最新的 master 版本并将其与本地生成进行比较(使用二进制文件的 bloaty 大小探查器)。
Before starting Qt Creator, the project file needs to be created:
git clone --recursive https://github.com/google/bloaty.git /tmp/bloaty \
&& cd /tmp/bloaty && cmake -GNinja . && ninja bloaty && cp bloaty /usr/local/bin/ \
&& rm -rf /tmp/*
下面的示例演示如何查看从 px4_fmu-v2_default
中删除 mpu9250 驱动程序的影响。 首先,它在本地构建一个没有驱动程序的生成:
然后通过 文件 > 打开项目 加载根目录下的 CMakeLists.txt。
可以看出,从 px4_fmu-v2_default
删除 mpu9250 驱动,可以节省 10.3KB 的 flash 空间。 它还显示了 mpu9250 驱动程序的不同部件的大小。
开启 Qt creator 之前,需要新建 项目文件。
% git diff
diff --git a/boards/px4/fmu-v2/default.cmake b/boards/px4/fmu-v2/default.cmake
index 40d7778..2ce7972 100644
--- a/boards/px4/fmu-v2/default.cmake
+++ b/boards/px4/fmu-v2/default.cmake
@@ -36,7 +36,7 @@ px4_add_board(
imu/l3gd20
imu/lsm303d
imu/mpu6000
- imu/mpu9250
+ #imu/mpu9250
#iridiumsbd
#irlock
#magnetometer # all available magnetometer drivers
VENDOR_MODEL_VARIANT: (also known as CONFIGURATION_TARGET
)
- Aerotenna OcPoC-Zynq Mini Flight Controller > Building PX4 for OcPoC-Zynq(PX4 用户手册)
- MODEL: *飞控板模型</1>"模型 ":
sitl
、fmu-v2
、fmu-v3
、fmu-v4
、fmu-v5
、navio2
等。 - **VARIANT:**特定配置:例如
rtps
、lpe
,其中包含默认
配置中不存在的组件。 最常见的是default
,可以省略。
:::tip
You can get a list of all available CONFIGURATION_TARGET
options using the command below:
make list_config_targets
:::
VIEWER_MODEL_DEBUGGER_WORLD:
- **VIEWER:**这是启动和连接的模拟器("查看器"):
gazebo
,jmavsim
- **MODEL:**要使用的 载具 模型(例如
iris
(default)、rover
、tailsitter
等),该模型将由模拟器加载。 环境变量PX4_SIM_MODEL
将设置为所选模型。 然后在 启动脚本 中使用该模型来选择适当的参数。 - **DEBUGGER:**要使用的调试器:
none
(default)、ide
、gdb
、lldb
、ddd
、valgrind
、callgrind
。 有关详细信息,请参阅 < 0>Simulation 调试 </0>。 - WORLD: (Gazebo only). Set a the world (PX4/sitl_gazebo/worlds) that is loaded. Default is empty.world. For more information see Gazebo > Loading a Specific World.
:::tip
You can get a list of all available VIEWER_MODEL_DEBUGGER_WORLD
options using the command below:
(cd /home/linaro && ./px4 mainapp.config > mainapp.log)
exit 0
:::
Notes:
CONFIGURATION_TARGET
和VIEWER_MODEL_DEBUGGER
中的大多数值都有默认值, 因此是可选的。 比如,gazebo
相当于gazebo_iris
或gazebo_iris_none
。- 如果要在其他两个设置之间指定默认值,可以使用三个下划线。 例如,
gazebo___gdb
等效于gazebo_iris_gdb
。 - 您可以使用
VIEWER_MODEL_DEBUGGER
的none
值启动 PX4 并等待模拟器。 例如,使用make px4_sitl_default none
启动 PX4和使用./Tools/jmavsim_run.sh
启动 jMAVSim 。
The VENDOR_MODEL_VARIANT
options map to particular cmake configuration files in the PX4 source tree under the /boards directory. Specifically VENDOR_MODEL_VARIANT
maps to a configuration file boards/VENDOR/MODEL/VARIANT.cmake (e.g. px4_fmu-v5_default
corresponds to boards/px4/fmu-v5/default.cmake).
Additional make targets are discussed in the following sections (list is not exhaustive):
The bloaty_compare_master
build target allows you to get a better understanding of the impact of changes on code size. When it is used, the toolchain downloads the latest successful master build of a particular firmware and compares it to the local build (using the bloaty size profiler for binaries).
:::tip
This can help analyse changes that (may) cause px4_fmu-v2_default
to hit the 1MB flash limit.
:::
Bloaty must be in your path and found at cmake configure time. The PX4 docker files install bloaty as shown:
git clone --recursive https://github.com/google/bloaty.git /tmp/bloaty \
&& cd /tmp/bloaty && cmake -GNinja . && ninja bloaty && cp bloaty /usr/local/bin/ \
&& rm -rf /tmp/*
The example below shows how you might see the impact of removing the mpu9250 driver from px4_fmu-v2_default
. First it locally sets up a build without the driver:
% git diff
diff --git a/boards/px4/fmu-v2/default.cmake b/boards/px4/fmu-v2/default.cmake
index 40d7778..2ce7972 100644
--- a/boards/px4/fmu-v2/default.cmake
+++ b/boards/px4/fmu-v2/default.cmake
@@ -36,7 +36,7 @@ px4_add_board(
imu/l3gd20
imu/lsm303d
imu/mpu6000
- imu/mpu9250
+ #imu/mpu9250
#iridiumsbd
#irlock
#magnetometer # all available magnetometer drivers
Then use the make target, specifying the target build to compare (px4_fmu-v2_default
in this case):
% make px4_fmu-v2_default bloaty_compare_master
...
...
...
VM SIZE FILE SIZE
-------------- --------------
[DEL] -52 MPU9250::check_null_data(unsigned int*, unsigned char) -52 [DEL]
[DEL] -52 MPU9250::test_error() -52 [DEL]
[DEL] -52 MPU9250_gyro::MPU9250_gyro(MPU9250*, char const*) -52 [DEL]
[DEL] -56 mpu9250::info(MPU9250_BUS) -56 [DEL]
[DEL] -56 mpu9250::regdump(MPU9250_BUS) -56 [DEL]
... -336 [DEL]
[DEL] -344 MPU9250_mag::_measure(ak8963_regs) -344 [DEL]
[DEL] -684 MPU9250::MPU9250(device::Device*, device::Device*, char const*, char const*, cha -684 [DEL]
[DEL] -684 MPU9250::init() -684 [DEL]
[DEL] -1000 MPU9250::measure() -1000 [DEL]
-41.3% -1011 [43 Others] -1011 -41.3%
-1.0% -1.05Ki [Unmapped] +24.2Ki +0.2%
-1.0% -10.3Ki TOTAL +14.9Ki +0.1%
This shows that removing mpu9250 from px4_fmu-v2_default
would save 10.3 kB of flash. It also shows the sizes of different pieces of the mpu9250 driver.
The PX4 Firmware Version and Custom Firmware Version are published using the MAVLink AUTOPILOT_VERSION message, and displayed in the QGroundControl Setup > Summary airframe panel:
These are extracted at build time from the active git tag for your repo tree. The git tag should be formatted as <PX4-version>-<vendor-version>
(e.g. the tag in the image above was set to v1.8.1-2.22.1
).
:::warning If you use a different git tag format, versions information may not be displayed properly. :::
Many build problems are caused by either mismatching submodules or an incompletely cleaned-up build environment. Updating the submodules and doing a distclean
can fix these kinds of errors:
cd ~/src/Firmware
mkdir -p build/creator
cd build/creator
cmake ../.. -G "CodeBlocks - Unix Makefiles"
The region 'flash' overflowed by XXXX bytes
error indicates that the firmware is too large for the target hardware platform. This is common for make px4_fmu-v2_default
builds, where the flash size is limited to 1MB.
If you're building the vanilla master branch, the most likely cause is using an unsupported version of GCC. In this case, install the version specified in the Developer Toolchain instructions.
If building your own branch, it is possibly you have increased the firmware size over the 1MB limit. In this case you will need to remove any drivers/modules that you don't need from the build.
MacOS allows a default maximum of 256 open files in all running processes. The PX4 build system opens a large number of files, so you may exceed this number.
The build toolchain will then report Too many open files
for many files, as shown below:
/usr/local/Cellar/gcc-arm-none-eabi/20171218/bin/../lib/gcc/arm-none-eabi/7.2.1/../../../../arm-none-eabi/bin/ld: cannot find NuttX/nuttx/fs/libfs.a: Too many open files
The solution is to increase the maximum allowed number of open files (e.g. to 300). You can do this in the macOS Terminal for each session:
- Run this script Tools/mac_set_ulimit.sh, or
- Enter this command:
ulimit -S -n 300
As of macOS Catalina 10.15.1 there may be problems when trying to build the simulator with cmake. If you have build problems on this platform then try run the following command in your terminal:
xcode-select --install
sudo ln -s /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/include/* /usr/local/include/
"Failed to import" errors when running the make px4_sitl jmavsim
command indicates that some Python packages are not installed (where expected).
Failed to import jinja2: No module named 'jinja2'
You may need to install it using:
pip3 install --user jinja2
If you have already installed these dependencies this may be because there is more than one Python version on the computer (e.g. Python 2.7.16 Python 3.8.3), and the module is not present in the version used by the build toolchain.
You should be able to fix this by explicitly installing the dependencies as shown:
pip3 install --user pyserial empy toml numpy pandas jinja2 pyyaml pyros-genmsg packaging