-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinal.R
159 lines (121 loc) · 4.34 KB
/
Final.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#### (1)
Data1 <- read.table("Data1.dat",header = TRUE)
Data1$Level <- factor(Data1$Level)
Tab1 <- aggregate(Data1$Count,
by=list(Level=Data1$Level, Male=Data1$Male, LD=Data1$LD),
FUN=sum)
names(Tab1)[4]="Count"
# (a)
ftable(xtabs(Count ~ Level + Male + LD, data =Tab1),
col.vars = "LD")
# (b)
Tab1.1 <- tapply(Tab1$Count,Tab1[,c(2,3,1)],sum)
library(vcd)
or <- oddsratio(Tab1.1,log=F)
or
Tab1.2<- tapply(Tab1$Count,Tab1[,c(2,3)],sum)
oddsratio(Tab1.2,log=F)
# (c)
cmh.test <- mantelhaen.test(Tab1.1, correct = F)
cmh.test$stat
cmh.test$p.value
# (d)
cmh.test$est
cmh.test$conf.int[1:2]
#### (2)
# (a)
Tab2=cbind(Data1[1:24,c(1,2,3,4,6)], Data1[25:48,6])
names(Tab2)[5:6]=c("No", "Yes")
Tab2$Level <- as.factor(Tab2$Level)
# (b)
obj1=glm(cbind(Yes, No)~Level*Male*Night*Wet, family=binomial(), data=Tab2)
summary(obj1)
step(obj1)
# (c)
obj.select=step(obj1)
resid(obj.select, type="pearson")/sqrt(1 -lm.influence(obj.select)$hat)
############ The standardized Pearson residuals fluctuate around 0, suggesting the model with Level, Male, Night, Wet as predictors fits well.
# (d)
obj3=glm(cbind(Yes, No)~Level+Male*Night+Wet, family=binomial(), data=Tab2)
anova(obj3, obj.select, test="Chisq")
# (e)
obj2=glm(cbind(Yes, No)~Male*Night+Wet, family=binomial(), data=Tab2)
anova(obj2, obj.select, test="Chisq")
# (f)
Tab3.1=(Tab2[rep(seq_len(nrow(Tab2)), Tab2$No),])[,-c(5,6)]
Tab3.1$y = 0
Tab3.2=(Tab2[rep(seq_len(nrow(Tab2)), Tab2$Yes),])[,-c(5,6)]
Tab3.2$y = 1
Tab3=rbind(Tab3.1, Tab3.2)
model.fit <- glm(y~ Level + Male + Night + Wet + Male:Night + Level:Wet,
family=binomial(), data=Tab3)
pihat <- predict(model.fit,type="response")
pi0 <- seq(0.05,0.95,by=.05)
fun <- function(x,y) ifelse(x>y,1,0)
sensfun <-function(ypred) sum(ypred[Tab3$y==1]==1)/sum(Tab3$y==1)
specfun <-function(ypred) sum(ypred[Tab3$y==0]==0)/sum(Tab3$y==0)
roc <- function(arg1) {
yhat <- outer(arg1,pi0,fun)
sens <- apply(yhat,2,sensfun)
spec <- apply(yhat,2,specfun)
data.frame(sens=sens,spec=spec)
}
x <- roc(pihat)
f <- approxfun(1-x$spec,x$sens)
area <- integrate(f,0.05,0.95)$value
plot(1-x$spec,x$sens,xlab="1 - specificity",
ylab="sensitivity",pch=19)
#### (3)
Data2 <- read.table("Data2.dat",header = TRUE)
Data2$Level <- factor(Data2$Level)
# (a)
library(nnet)
obj4.1 <- multinom(Distraction ~ Level+Male, data = Data2,
weights = Count, trace = F)
obj4.2 <- multinom(Distraction ~ Level*Male, data = Data2,
weights = Count, trace = F)
anova( obj4.2, obj4.1)
# (b)
newdata <- expand.grid(Level=levels(Data1$Level),
Male=c(0,1))
marg.count <- as.vector(tapply(Data2$Count,list(Data2$Level,Data2$Male),sum))
pred.count <- predict(obj4.2,newdata,type="probs")*marg.count
round(pred.count,1)
#### (4)
library(rms)
library(VGAM)
fit.vglm1 <- vglm(Distraction ~ Level+Male,
cumulative(link = logitlink, parallel = T),
weights = Count, data = Data2)
fit.vglm2 <- vglm(Distraction ~ Level*Male,
cumulative(link = logitlink, parallel = T),
weights = Count, data = Data2)
summary(fit.vglm2)
predictvglm(fit.vglm1,
type = c( "response"))
############ level 1 Male
predict(fit.vglm2, newdata = data.frame(Level=factor(1), Male = 1),type="response")
sum(predict(fit.vglm2, newdata = data.frame(Level=factor(1), Male = 1),type="response")[1:4])
############ level 2 Male
predict(fit.vglm2, newdata = data.frame(Level=factor(2), Male = 1),type="response")
sum(predict(fit.vglm2, newdata = data.frame(Level=factor(2), Male = 1),type="response")[1:4])
#### (5)
Data3 <- read.table("Data3.dat",header = TRUE)
Data3$Distraction <- factor(Data3$Distraction)
Data3$Level <- factor(Data3$Level)
##(a)
fit.loglinear <- glm(Count~Level*Male*Night*Wet+LD+Distraction,
family=poisson, data=Data3)
fit.main <- glm(Count~Level+Male+Night+Wet+LD+Distraction,
family=poisson, data=Data3)
anova(fit.main,fit.loglinear,test="Chisq")
############ p-value < 0.05, indicating the two models are significantly different
##(b)
fit.ll.select <- step(fit.loglinear,
scope = list(upper = ~.^6),
direction = "forward")
## (d)
fit.temp <- update(fit.ll.select, ~. - LD:Distraction)
anova(fit.temp, fit.ll.select,test="Chisq")
## (f)
1-pchisq(fit.temp$deviance, fit.temp$df.residual)