-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSCIS-CDG_PGDC.py
510 lines (461 loc) · 23.5 KB
/
SCIS-CDG_PGDC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import argparse
import torch
torch.cuda.empty_cache()
import os.path as osp
import GCL.losses as L
from GCL.losses import Loss
import GCL.augmentors as A
import torch.nn.functional as F
from torch import nn
import torch_geometric.transforms as T
import torch_geometric.utils as tg_utils
from sklearn.metrics import roc_auc_score
from tqdm import tqdm
from torch.optim import Adam
from GCL.eval import get_split
# from GCL.models import DualBranchContrast
from GCL.models import get_sampler
from torch_geometric.nn import GCNConv
from torch_geometric.datasets import Planetoid, Coauthor, Amazon
from augmentor_benchmarks import EdgeAdding, EdgeDroppingDegree, EdgeDroppingEVC, EdgeDroppingPR, rLap
from sklearn.metrics import f1_score, accuracy_score
from GCL.eval import BaseEvaluator
from ECD.FEGNN_model import *
import argparse
import numpy as np
import torch
from sklearn import metrics
from ECD.data.data_loader import load_net_specific_data
import torch.nn.functional as F
import pandas as pd
def _similarity(h1: torch.Tensor, h2: torch.Tensor):
h1 = F.normalize(h1)
h2 = F.normalize(h2)
return h1 @ h2.t()
class InfoNCE(Loss):
def __init__(self, tau):
super(InfoNCE, self).__init__()
self.tau = tau
def compute(self, anchor, sample, pos_mask, neg_mask, *args, **kwargs):
sim = _similarity(anchor, sample) / self.tau
exp_sim = torch.exp(sim) * (pos_mask + neg_mask)
log_prob = sim - torch.log(exp_sim.sum(dim=1, keepdim=True))
loss = log_prob * pos_mask
loss = loss.sum(dim=1) / pos_mask.sum(dim=1)
return -loss.mean()
class InfoNCEBatched(Loss):
def __init__(self, tau, batch_size):
super(InfoNCEBatched, self).__init__()
self.tau = tau
self.batch_size = batch_size
def compute(self, anchor, sample, pos_mask, neg_mask, *args, **kwargs):
device = anchor.device
num_nodes = anchor.size(0)
# print("NN: ", num_nodes)
num_batches = (num_nodes - 1) // self.batch_size + 1
f = lambda x: torch.exp(x / self.tau)
indices = torch.arange(0, num_nodes).to(device)
losses = []
for i in range(num_batches):
batch_mask = indices[i*self.batch_size: (i+1)*self.batch_size]
batch_pos_mask = pos_mask[i*self.batch_size: (i+1)*self.batch_size]
batch_sim = _similarity(anchor[batch_mask], sample)
batch_exp_sim = f(batch_sim)
batch_log_prob = batch_sim - torch.log(batch_exp_sim.sum(dim=1, keepdim=True))
batch_loss = batch_log_prob * batch_pos_mask
batch_loss = batch_loss.sum(dim=1)
losses.append(batch_loss)
# print(batch_loss.shape)
losses = torch.cat(losses)
# print(losses.shape)
return -losses.mean()
class DualBranchContrast(torch.nn.Module):
def __init__(self, loss: Loss, mode: str, intraview_negs: bool = False, **kwargs):
super(DualBranchContrast, self).__init__()
self.loss = loss
self.mode = mode
self.sampler = get_sampler(mode, intraview_negs=intraview_negs)
self.kwargs = kwargs
def forward(self, h1=None, h2=None, g1=None, g2=None, batch=None, h3=None, h4=None,
extra_pos_mask=None, extra_neg_mask=None):
if self.mode == 'L2L':
assert h1 is not None and h2 is not None
anchor1, sample1, pos_mask1, neg_mask1 = self.sampler(anchor=h1, sample=h2)
anchor2, sample2, pos_mask2, neg_mask2 = self.sampler(anchor=h2, sample=h1)
elif self.mode == 'G2G':
assert g1 is not None and g2 is not None
anchor1, sample1, pos_mask1, neg_mask1 = self.sampler(anchor=g1, sample=g2)
anchor2, sample2, pos_mask2, neg_mask2 = self.sampler(anchor=g2, sample=g1)
else: # global-to-local
if batch is None or batch.max().item() + 1 <= 1: # single graph
assert all(v is not None for v in [h1, h2, g1, g2, h3, h4])
anchor1, sample1, pos_mask1, neg_mask1 = self.sampler(anchor=g1, sample=h2, neg_sample=h4)
anchor2, sample2, pos_mask2, neg_mask2 = self.sampler(anchor=g2, sample=h1, neg_sample=h3)
else: # multiple graphs
assert all(v is not None for v in [h1, h2, g1, g2, batch])
anchor1, sample1, pos_mask1, neg_mask1 = self.sampler(anchor=g1, sample=h2, batch=batch)
anchor2, sample2, pos_mask2, neg_mask2 = self.sampler(anchor=g2, sample=h1, batch=batch)
l1 = self.loss(anchor=anchor1, sample=sample1, pos_mask=pos_mask1, neg_mask=neg_mask1, **self.kwargs)
l2 = self.loss(anchor=anchor2, sample=sample2, pos_mask=pos_mask2, neg_mask=neg_mask2, **self.kwargs)
return (l1 + l2) * 0.5
class LogisticRegression(nn.Module):
def __init__(self, num_features, num_classes):
super(LogisticRegression, self).__init__()
self.fc = nn.Linear(num_features, num_classes)
torch.nn.init.xavier_uniform_(self.fc.weight.data)
def forward(self, x):
z = self.fc(x)
return z
class LREvaluator(BaseEvaluator):
def __init__(self, num_epochs: int = 300, learning_rate: float = 0.01,
weight_decay: float = 0.0, test_interval: int = 20):
self.num_epochs = num_epochs
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.test_interval = test_interval
def evaluate(self, x: torch.FloatTensor, y: torch.LongTensor, split: dict):
device = x.device
x = x.detach().to(device)
input_dim = x.size()[1]
y = y.to(device)
num_classes = y.max().item() + 1
classifier = LogisticRegression(input_dim, int(num_classes)).to(device)
optimizer = Adam(classifier.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
output_fn = nn.LogSoftmax(dim=-1)
criterion = nn.NLLLoss()
best_val_micro = 0
best_test_micro = 0
best_test_macro = 0
best_epoch = 0
best_accuracy = 0
best_auc = 0 # 初始化最佳 AUC 分数
for epoch in range(self.num_epochs):
classifier.train()
optimizer.zero_grad()
output = classifier(x[split['train']])
# print(output)
loss = criterion(output_fn(output), y[split['train']].long())
loss.backward()
optimizer.step()
if (epoch + 1) % self.test_interval == 0:
classifier.eval()
y_test = y[split['test']].detach().cpu().numpy()
y_pred = classifier(x[split['test']]).argmax(-1).detach().cpu().numpy()
# print(len(y_pred[y_pred==1]))
# print(len(y_pred))
accuracy = accuracy_score(y_test, y_pred)
test_micro = f1_score(y_test, y_pred, average='micro')
test_macro = f1_score(y_test, y_pred, average='macro')
y_val = y[split['valid']].detach().cpu().numpy()
y_pred = classifier(x[split['valid']]).argmax(-1).detach().cpu().numpy()
val_micro = f1_score(y_val, y_pred, average='micro')
if val_micro > best_val_micro:
best_val_micro = val_micro
best_test_micro = test_micro
best_test_macro = test_macro
best_epoch = epoch
best_accuracy = accuracy
if num_classes == 2:
y_proba = torch.softmax(classifier(x[split['test']]), dim=-1)[:, 1].detach().cpu().numpy()
auc_score = roc_auc_score(y_test, y_proba)
if auc_score > best_auc:
best_auc = auc_score
return {
'micro_f1': best_test_micro,
'macro_f1': best_test_macro,
'accuracy': best_accuracy,
'auc': best_auc
}
class GConv(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, activation, num_layers):
super(GConv, self).__init__()
self.activation = activation()
self.layers = torch.nn.ModuleList()
self.layers.append(GCNConv(input_dim, hidden_dim, cached=False))
for _ in range(num_layers - 1):
self.layers.append(GCNConv(hidden_dim, hidden_dim, cached=False))
def forward(self, x, edge_index, edge_weight=None):
z = x
for i, conv in enumerate(self.layers):
z = conv(z, edge_index, edge_weight)
z = self.activation(z)
return z
class Encoder(torch.nn.Module):
def __init__(self, encoder, augmentor, hidden_dim, proj_dim,data,weights=[0.95, 0.90, 0.15, 0.10]):
super(Encoder, self).__init__()
self.encoder = encoder
self.augmentor = augmentor
self.data=data
self.fc1 = torch.nn.Linear(hidden_dim, proj_dim)
self.fc2 = torch.nn.Linear(proj_dim, hidden_dim)
self.linear1 = torch.nn.Linear(3, hidden_dim)
self.linear_r0 = torch.nn.Linear(hidden_dim, 1)
self.linear_r1 = torch.nn.Linear(hidden_dim, 1)
self.linear_r2 = torch.nn.Linear(hidden_dim, 1)
self.linear_r3 = torch.nn.Linear(hidden_dim, 1)
self.weight_r0 = torch.nn.Parameter(torch.Tensor([weights[0]]), requires_grad=True)
self.weight_r1 = torch.nn.Parameter(torch.Tensor([weights[1]]), requires_grad=True)
self.weight_r2 = torch.nn.Parameter(torch.Tensor([weights[2]]), requires_grad=True)
self.weight_r3 = torch.nn.Parameter(torch.Tensor([weights[3]]), requires_grad=True)
self.use_bn = False
self.residual = True
self.bns = nn.ModuleList()
self.bns.append(nn.LayerNorm(hidden_dim))
self.alpha = nn.Parameter(torch.tensor(0.5, dtype=torch.float32))
# self.linear_all=torch.nn.Linear(1,hidden_dim)
def forward(self, x, edge_index,data,edge_weight=None):
x_input = x
edge_index = edge_index
cp_adj=data.adj
### 1
x_input = F.dropout(x_input, p=0.5, training=self.training)
x_input=torch.relu(self.linear1(x_input))
aug1, aug2 = self.augmentor
x1, edge_index1, edge_weight1 = aug1(x_input, edge_index, edge_weight)
x2, edge_index2, edge_weight2 = aug2(x_input, edge_index, edge_weight)
# R0,edge_index_1,cp_adj,data,
# z = self.linear_r0(self.encoder(x_input, edge_index, cp_adj,edge_weight))
z1 = self.encoder(x1, edge_index1, cp_adj,edge_weight1)
z2 = self.encoder(x2, edge_index2, cp_adj,edge_weight2)
z=self.multi_layers(x_input, edge_index, cp_adj,edge_weight)
# z1=self.multi_layers(x1, edge_index1, cp_adj,edge_weight1)
# z2=self.multi_layers(x2, edge_index2, cp_adj,edge_weight2)
return z, z1, z2
def multi_layers(self,x_input, edge_index, cp_adj,edge_weight):
# T0 = R0 = torch.relu(self.linear1(x_input)) #[7695, 100]
T0=x_input
R0=x_input
layer_ = []
layer_.append(R0)
i = 0
R0 = self.encoder(R0,edge_index,cp_adj,edge_weight)
# print('经过一层之后',R0.shape) [n,58]
if self.residual:
R0 = self.alpha * R0 + (1 - self.alpha) * layer_[i] # 残差
if self.use_bn:
R0 = self.bns[i](R0)
T1 = R0
layer_ = []
layer_.append(R0)
R0 = self.encoder(R0,edge_index,cp_adj,edge_weight)
if self.residual:
R0 = self.alpha * R0 + (1 - self.alpha) * layer_[i]
if self.use_bn:
R0 = self.bns[i](R0)
T2 = R0
layer_ = []
layer_.append(R0)
R0 = self.encoder(R0,edge_index,cp_adj,edge_weight)
if self.residual:
R0 = self.alpha * R0 + (1 - self.alpha) * layer_[i]
if self.use_bn:
R0 = self.bns[i](R0)
T3 = R0
T0 = F.dropout(T0, p=0.5, training=self.training)
res0 = self.linear_r0(T0)
T1 = F.dropout(T1, p=0.5, training=self.training)
res1 = self.linear_r1(T1)
T2 = F.dropout(T2, p=0.5, training=self.training)
res2 = self.linear_r2(T2)
T3 = F.dropout(T3, p=0.5, training=self.training)
res3 = self.linear_r3(T3)
out = res0 * self.weight_r0 + res1 * self.weight_r1 + res2 * self.weight_r2 + res3 * self.weight_r3
return out
def project(self, z: torch.Tensor) -> torch.Tensor:
z = F.elu(self.fc1(z))
return self.fc2(z)
def train(encoder_model, contrast_model, data, optimizer):
encoder_model.train()
optimizer.zero_grad()
z, z1, z2 = encoder_model(data.x, data.edge_index, data,data.edge_attr)
h1, h2 = [encoder_model.project(x) for x in [z1, z2]]
loss_c = contrast_model(h1, h2)
loss_m = F.binary_cross_entropy_with_logits(z, data.y.view(-1, 1))
loss=loss_c+loss_m
loss.backward()
optimizer.step()
return z,loss.item()
def test(encoder_model, data):
encoder_model.eval()
z, _, _ = encoder_model(data.x, data.edge_index, data,data.edge_attr)
split = get_split(num_samples=z.size()[0], train_ratio=0.7, test_ratio=0.1)
result = LREvaluator()(z, data.y, split)
return result
# def test(model,data):
# model.eval()
# x = model(data)
# pred = torch.sigmoid(x[mask])
# precision, recall, _thresholds = metrics.precision_recall_curve(data.y[mask].cpu().numpy(),
# pred.cpu().detach().numpy())
# area = metrics.auc(recall, precision)
# return metrics.roc_auc_score(data.y[mask].cpu().numpy(), pred.cpu().detach().numpy()), area, data.y[
# mask].cpu().numpy(), pred.cpu().detach().numpy()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--output',type=str,default='/root/rlap-main_fe_gnn/cancer_Net/PathNet/Result/predicted_scores_UCEC_PathNet.txt',help='/root/rlap-main_fe_gnn/cancer_Net/PathNet/Result/predicted_scores_BLCA_PathNet.txt')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--cuda', type=int, default=0, help='Cuda device.')
parser.add_argument('--dropout', type=float, default=0.5)
## choose 多项式
parser.add_argument("--poly", type=str, default='ours', choices=['gpr', 'cheb', 'cheb2', 'bern', 'gcn', 'ours'])
parser.add_argument('--K', type=int, default=1)###
parser.add_argument('--epochs', type=int, default=30, help='Number of epochs to train.')
parser.add_argument('--idx', type=int, default=0, help='For multiple graphs, e.g. ppi has 20 graphs')
parser.add_argument('--d', type=int, default=0, help='random dicts')
parser.add_argument('--base', type=int, default=-1, help='random dicts')
parser.add_argument('--nx', type=int, default=512, help='hidden size for the node feature subdictionary, default -1 for use the feature\'s size')
parser.add_argument('--nlx', type=int, default=512, help='hidden size for the interaction subdictionary, default -1 for use the feature\'s size')
parser.add_argument('--nl', type=int, default=50, help='hidden size for the sturcture subdictionary, default 0 for not using this subdictionary') # chameleon 700, squirrel 2000
parser.add_argument('--share_lx', action='store_true', default=False, help='share the same w1 for different hops of lx')
# parser.add_argument('--warmup', type=int, default=50, help='random dicts')
# parser.add_argument('--no_use_best_args', action='store_true', default=False)
parser.add_argument('--is_5_CV_test', type=bool, default=True, help='Run 5-CV test.')
parser.add_argument('--dataset_file', type=str, default='/root/rlap-main_fe_gnn/cancer_Net/PathNet/PathNet_UCEC_ten_5CV.pkl',
help='The path of the input pkl file.') # When setting is_5_CV_test=True, make sure the pkl file include masks of different 5CV splits.
# parser.add_argument('--epochs', type=int, default=100, help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01, help='Initial learning rate.')
parser.add_argument('--w_decay', type=float, default=0.00001, help='Weight decay (L2 loss on parameters).')
parser.add_argument('--ninput', type=int, default=3, help='Dimension of node features.')
parser.add_argument('--nhid', type=int, default=512, help='Dimension of hidden Linear layers.')
parser.add_argument('--device', type=int, default=0, help='The id of GPU.')
parser.add_argument('--augmentor', type=str,default='rLap')
# parser.add_argument('--dataset', type=str,default='CORA')
# parser.add_argument('--num_layers', type=int,default=2)
# parser.add_argument('--lr', type=float,default=0.001)
# parser.add_argument('--wd', type=float,default=0.001)
# parser.add_argument('--hidden_dim', type=int,default=58)
parser.add_argument('--mode', type=str,default='L2L')
parser.add_argument('--fraction1', type=float,default=0.4)
parser.add_argument('--fraction2', type=float,default=0.2)
args = parser.parse_args()
print(args)
device = torch.device('cuda:%d' % args.device if torch.cuda.is_available() else 'cpu')
# path = osp.join(osp.expanduser('~'), 'datasets')
# datasets = {
# "CORA": lambda: Planetoid(path, name='Cora', transform=T.NormalizeFeatures()),
# "PUBMED": lambda: Planetoid(path, name='PubMed', transform=T.NormalizeFeatures()),
# "COAUTHOR-CS": lambda: Coauthor(path, name="CS", transform=T.NormalizeFeatures()),
# "COAUTHOR-PHY": lambda: Coauthor(path, name="Physics", transform=T.NormalizeFeatures()),
# "AMAZON-PHOTO": lambda: Amazon(path, name='Photo', transform=T.NormalizeFeatures())
# }
# dataset = datasets[args.dataset]()
# data = dataset[0].to(device)
data = load_net_specific_data(args)
data = data.to(device)
data.edge_index = tg_utils.to_undirected(data.edge_index)
num_nodes = data.edge_index.max().item() + 1
fraction1 = args.fraction1
fraction2 = args.fraction2
augmentors = {
"rLap": [
A.Compose([rLap(frac=fraction1, o_v="random", o_n="asc"), A.FeatureMasking(pf=0.3)]),
A.Compose([rLap(frac=fraction2, o_v="random", o_n="asc"), A.FeatureMasking(pf=0.3)])
],
"rLapRandomDesc": [
A.Compose([rLap(frac=fraction1, o_v="random", o_n="desc"), A.FeatureMasking(pf=0.3)]),
A.Compose([rLap(frac=fraction2, o_v="random", o_n="desc"), A.FeatureMasking(pf=0.3)])
],
"rLapRandomRandom": [
A.Compose([rLap(frac=fraction1, o_v="random", o_n="random"), A.FeatureMasking(pf=0.3)]),
A.Compose([rLap(frac=fraction2, o_v="random", o_n="random"), A.FeatureMasking(pf=0.3)])
],
"rLapDegree": [
A.Compose([rLap(frac=fraction1, o_v="degree", o_n="asc"), A.FeatureMasking(pf=0.3)]),
A.Compose([rLap(frac=fraction2, o_v="degree", o_n="asc"), A.FeatureMasking(pf=0.3)])
],
"rLapDegreeDesc": [
A.Compose([rLap(frac=fraction1, o_v="degree", o_n="desc"), A.FeatureMasking(pf=0.3)]),
A.Compose([rLap(frac=fraction2, o_v="degree", o_n="desc"), A.FeatureMasking(pf=0.3)])
],
"rLapDegreeRandom": [
A.Compose([rLap(frac=fraction1, o_v="degree", o_n="random"), A.FeatureMasking(pf=0.3)]),
A.Compose([rLap(frac=fraction2, o_v="degree", o_n="random"), A.FeatureMasking(pf=0.3)])
],
"rLapCoarsen": [
A.Compose([rLap(frac=fraction1, o_v="coarsen"), A.FeatureMasking(pf=0.3)]),
A.Compose([rLap(frac=fraction2, o_v="coarsen"), A.FeatureMasking(pf=0.3)])
],
"EdgeAddition": [
A.Compose([EdgeAdding(pe=fraction1), A.FeatureMasking(pf=0.3)]),
A.Compose([EdgeAdding(pe=fraction2), A.FeatureMasking(pf=0.3)])
],
"EdgeDropping": [
A.Compose([A.EdgeRemoving(pe=fraction1), A.FeatureMasking(pf=0.3)]),
A.Compose([A.EdgeRemoving(pe=fraction2), A.FeatureMasking(pf=0.3)])
],
"EdgeDroppingDegree": [
A.Compose([EdgeDroppingDegree(p=fraction1, threshold=0.7), A.FeatureMasking(pf=0.3)]),
A.Compose([EdgeDroppingDegree(p=fraction2, threshold=0.7), A.FeatureMasking(pf=0.3)])
],
"EdgeDroppingPR": [
A.Compose([EdgeDroppingPR(p=fraction1, threshold=0.7), A.FeatureMasking(pf=0.3)]),
A.Compose([EdgeDroppingPR(p=fraction2, threshold=0.7), A.FeatureMasking(pf=0.3)])
],
"EdgeDroppingEVC": [
A.Compose([EdgeDroppingEVC(p=fraction1, threshold=0.7), A.FeatureMasking(pf=0.3)]),
A.Compose([EdgeDroppingEVC(p=fraction2, threshold=0.7), A.FeatureMasking(pf=0.3)])
],
"NodeDropping": [
A.Compose([A.NodeDropping(pn=fraction1), A.FeatureMasking(pf=0.3)]),
A.Compose([A.NodeDropping(pn=fraction2), A.FeatureMasking(pf=0.3)])
],
"RandomWalkSubgraph": [
A.Compose([A.RWSampling(num_seeds=int(fraction1*num_nodes), walk_length=10), A.FeatureMasking(pf=0.3)]),
A.Compose([A.RWSampling(num_seeds=int(fraction2*num_nodes), walk_length=10), A.FeatureMasking(pf=0.3)])
],
"PPRDiffusion": [
A.Compose([A.Identity(), A.FeatureMasking(pf=0.3)]),
A.Compose([A.PPRDiffusion(alpha=0.2, use_cache=True), A.FeatureMasking(pf=0.3)])
],
"MarkovDiffusion": [
A.Compose([A.Identity(), A.FeatureMasking(pf=0.3)]),
A.Compose([A.MarkovDiffusion(alpha=0.2, use_cache=True), A.FeatureMasking(pf=0.3)])
],
}
aug1, aug2 = augmentors[args.augmentor]
# gconv = GConv(
# input_dim=data.num_features,
# hidden_dim=args.hidden_dim,
# activation=torch.nn.PReLU,
# num_layers=args.num_layers).to(device)
pred_all=0
for time in range(2):
early_stopping_tolerance = 30
current_tolerance = 0
best_loss = 1e8
best_epoch = 0
print('trainning time{}'.format(time))
fegnn=FEGNN(args,data.num_features,2)
encoder_model = Encoder(encoder=fegnn, augmentor=(aug1, aug2), hidden_dim=args.nhid, proj_dim=args.nhid,data=data).to(device)
contrast_model = DualBranchContrast(loss=InfoNCEBatched(tau=0.1, batch_size=1024), mode=args.mode, intraview_negs=False).to(device)
optimizer = Adam(encoder_model.parameters(), lr=args.lr, weight_decay=args.w_decay)
with tqdm(total=500, desc='(T)') as pbar:
for epoch in range(1,500):
pred,loss = train(encoder_model, contrast_model, data, optimizer)
pbar.set_postfix({'loss': loss})
pbar.update()
if loss < best_loss:
best_loss = loss
best_epoch = epoch
current_tolerance = 0
else:
current_tolerance += 1
if current_tolerance == early_stopping_tolerance:
print("Reached early stopping tolerance!")
break
pred,loss=train(encoder_model, contrast_model, data, optimizer)
pred_all = pred.cpu().detach().numpy() + pred_all
pred_all=pred_all/2
pre_res = pd.DataFrame(pred_all,columns=['score'],index=data.node_names)
pre_res.sort_values(by=['score'], inplace=True, ascending=False)
# Save the final ranking list of predicted driver genes
pre_res.to_csv(path_or_buf=args.output, sep='\t', index=True, header=True)
sum_auc=0
for i in tqdm(range(10)):
test_result = test(encoder_model, data)
sum_auc=sum_auc+test_result["auc"]
print(f'Test run: {i} : Best test F1Mi={test_result["micro_f1"]:.4f}, F1Ma={test_result["macro_f1"]:.4f}, Acc={test_result["accuracy"]:.4f},Auc={test_result["auc"]}')
print((sum_auc/10))
if __name__ == '__main__':
main()