forked from hosang/gossipnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
135 lines (111 loc) · 4.38 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
try:
import cPickle as pickle
except ImportError:
import pickle
import numpy as np
import tensorflow as tf
from tqdm import tqdm
import imdb
from nms_net import cfg, tools
from nms_net.config import cfg_from_file
from nms_net.dataset import load_roi
from nms_net.network import Gnet
def dump_debug_info(sess, net, batch_spec, model_file):
with open('{}-dbg.pkl'.format(model_file), 'rb') as fp:
batch_data = pickle.load(fp)
feed_dict = {getattr(net, name): batch_data[name]
for name in batch_spec.keys()}
keys = batch_data.keys()
res = sess.run([getattr(net, k) for k in keys], feed_dict=feed_dict)
dbg_data = dict(zip(keys, res))
fn = '{}-dbg-test.pkl'.format(model_file)
with open(fn, 'wb') as fp:
pickle.dump(dbg_data, fp)
print('wrote {}'.format(fn))
def test_run(test_imdb):
roidb = test_imdb['roidb']
batch_spec = Gnet.get_batch_spec(num_classes=test_imdb['num_classes'],
is_training=False)
need_image = 'image' in batch_spec
net = Gnet(num_classes=test_imdb['num_classes'])
output_detections = []
restorer = tf.train.Saver()
config = tf.ConfigProto()
#log_device_placement=True,
#allow_soft_placement=True)
config.gpu_options.allow_growth = True
forward_timer = tools.Timer()
num_dets = num_images = 0
with tf.Session(config=config) as sess:
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
restorer.restore(sess, cfg.test_model)
tf.report_uninitialized_variables()
for i, roi in enumerate(tqdm(roidb)):
if 'dets' not in roi or roi['dets'].size == 0:
continue
roi = load_roi(need_image, roi)
feed_dict = {getattr(net, name): roi[name]
for name in batch_spec.keys()}
forward_timer.tic()
new_scores = sess.run(net.prediction, feed_dict=feed_dict)
forward_timer.toc()
num_dets += roi['dets'].shape[0]
num_images += 1
output_detections.append({
'id': roi['id'],
'dets': roi['dets'] / roi['im_scale'],
'det_classes': roi['det_classes'],
'det_scores': new_scores,
})
print('{:.6f}s per image with {:.1f} detections per image'.format(
forward_timer.average_time, num_dets / num_images))
return output_detections
def save_dets(testimdb, dets_as_dicts, output_file):
""" Convert detection to the
fast rcnn format (dets[num_classes][num_detections])
and pickle them to disk.
"""
cat_ids = [testimdb['class_to_cat_id'].get(cls, -1)
for cls in testimdb['classes']]
dets = [[] for _ in cat_ids]
image_ids = []
for det_dict in dets_as_dicts:
image_ids.append(det_dict['id'])
present_classes = set(np.unique(det_dict['det_classes']))
for cls_ind, _ in enumerate(cat_ids):
if cls_ind in present_classes:
mask = det_dict['det_classes'] == cls_ind
cls_dets = det_dict['dets'][mask, :]
cls_scores = det_dict['det_scores'][mask]
cls_dets = np.concatenate((cls_dets, cls_scores[:, None]),
axis=1)
else:
cls_dets = np.zeros((0, 5), dtype=np.float32)
dets[cls_ind]\
.append(cls_dets)
with open(output_file, 'wb') as fp:
# python2.7 compativility
pickle.dump((dets, image_ids, cat_ids), fp, protocol=2)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('outfile', help='detection file output')
parser.add_argument('-c', '--config', default='conf.yaml')
parser.add_argument('-m', '--model', default=None)
parser.add_argument('-s', '--imdb', default=None)
args, unparsed = parser.parse_known_args()
cfg_from_file(args.config)
if args.model is not None:
cfg.test_model = args.model
if args.imdb is not None:
cfg.test.imdb = args.imdb
test_imdb = imdb.get_imdb(cfg.test.imdb, is_training=False)
dets = test_run(test_imdb)
save_dets(test_imdb, dets, args.outfile)
if __name__ == '__main__':
main()