-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·51 lines (40 loc) · 1.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# coding: utf-8
from uc.mlp import MLP
import numpy as np
import sys
import random
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
iris = load_iris()
train_in = np.array(iris['data'], dtype=np.float32)
train_out = np.array(iris['target'], dtype=np.float32)
random_state = 42
X_train, X_test, y_train, y_test = train_test_split(
train_in, train_out, test_size=0.2, random_state=random_state)
random.seed(random_state)
param = {
'loss_type': 'softmax',
'layer_size': [4, 16, 16, 16, 3],
'activation': 'a2m2l',
'output_range': [0, 1],
'output_shrink': 0.001,
'importance_out': True,
'rate_init': 0.02,
'rate_decay': 0.9,
'epoch_log': 200,
'epoch_decay': 40,
'epoch_train': 2000,
'verbose': 1,
}
mlp = MLP(param)
if 1:
mlp.fit(X_train, y_train)
model = mlp.save_model()
else:
mlp.load_model()
predict_out = mlp.predict(X_test)
score = accuracy_score(y_test, predict_out)
print("test accuracy: %.2f%%" % (score*100))
from uc.plotting import plot_importance
plot_importance(mlp.feature_importances_)