forked from cshsu/ECE6254-final-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util_functions.py
38 lines (35 loc) · 1.55 KB
/
util_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# utility functions
# modify from
# http://nbviewer.jupyter.org/github/julienr/ipynb_playground/blob/master/keras/convmnist/keras_cnn_mnist.ipynb
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as pl
import numpy as np
def nice_imshow(ax, data, vmin=None, vmax=None, cmap=None):
"""Wrapper around pl.imshow"""
if cmap is None:
cmap = cm.jet
if vmin is None:
vmin = data.min()
if vmax is None:
vmax = data.max()
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
im = ax.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap)
pl.colorbar(im, cax=cax)
import numpy.ma as ma
def make_mosaic(imgs, nrows, ncols, border=1):
""" Given a set of images with all the same shape, makes a mosaic with nrows and ncols """
nimgs = imgs.shape[0]
imshape = imgs.shape[1:]
mosaic = ma.masked_all((nrows * imshape[0] + (nrows - 1) * border,
ncols * imshape[1] + (ncols - 1) * border),
dtype=np.float32)
paddedh = imshape[0] + border
paddedw = imshape[1] + border
for i in xrange(nimgs):
row = int(np.floor(i / ncols))
col = i % ncols
mosaic[row * paddedh:row * paddedh + imshape[0],
col * paddedw:col * paddedw + imshape[1]] = imgs[i]
return mosaic
#pl.imshow(make_mosaic(np.random.random((9, 10, 10)), 3, 3, border=1))