-
Notifications
You must be signed in to change notification settings - Fork 0
/
initw.py
54 lines (46 loc) · 1.97 KB
/
initw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copyright 2014 Google Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from python_util.gpumodel import *
import numpy as n
import numpy.random as nr
def get_src(filename):
src = IGPUModel.load_checkpoint(filename)
return src['model_state']['layers']
# Initialize weight matrix by copying weight matrix of given layer
def makew(name, idx, shape, params):
src = get_src(params[0])
return src[name]['weights'][idx]
# Initialize bias vector by copying bias vector of given layer
def makeb(name, shape, params):
src = get_src(params[0])
return src[name]['biases']
def concat(shape, src, src_layers, src_func):
mat = n.empty(shape, dtype=n.single, order='F')
start = 0
for s in src_layers:
m = src_func(src[s])
mat[:,start:start+m.shape[1]] = m
start += m.shape[1]
return mat
# Initialize weight matrix by concatenating weight matrices of given layers
def makewcat(name, idx, shape, params):
src, src_layers = get_src(params[0]), params[1:]
return concat(shape, src, src_layers, lambda x: x['weights'][idx])
# Initialize bias vector by concatenating bias vectors of given layers
def makebcat(name, shape, params):
src, src_layers = get_src(params[0]), params[1:]
return concat(shape, src, src_layers, lambda x: x['biases'])
# Initialize bias vector from tuple input
def makeb_vec(name, shape, params):
return n.array([n.single(x) for x in params], dtype=n.single).reshape((1, len(params)))