-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathpredict.cpp
140 lines (126 loc) · 3.46 KB
/
predict.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#include "util.hpp"
#include "reader.hpp"
#include "tick.hpp"
#include "nearest_centroid_classifier.hpp"
#include "tfidf_transformer.hpp"
#include "classifier_storage.hpp"
#include <cstdio>
#include "SETTINGS.h"
static void
predict_labels(std::vector<int> &results,
const fv_t &query,
const std::vector<int> &search_results,
ClassifierStorage &classifiers)
{
std::vector<int> candidate_labels;
std::vector<std::pair<double, int> > rank;
for (auto doc = search_results.begin(); doc != search_results.end(); ++doc) {
candidate_labels.push_back(*doc);
}
for (int i = 0; i < (int)candidate_labels.size(); ++i) {
const BinaryClassifier *classifier = classifiers.get(candidate_labels[i]);
if (classifier != 0) {
float value = classifier->predict(query);
rank.push_back(std::make_pair(value, candidate_labels[i]));
}
}
std::sort(rank.begin(), rank.end(),
std::greater<std::pair<double, int> >());
for (auto i = rank.begin(); i != rank.end(); ++i) {
if (results.size() == 0 || i->first >= 0.0) {
results.push_back(i->second);
}
}
}
bool
read_data(std::vector<fv_t> &data,
std::vector<label_t> &labels,
std::vector<fv_t> &test_data)
{
DataReader reader;
DataReader test_reader;
std::vector<label_t> *dummy_labels = new std::vector<label_t>;
if (!reader.open(TRAIN_DATA)) {
fprintf(stderr, "open failed: %s:\n", TRAIN_DATA);
return false;
}
if (!test_reader.open(TEST_DATA)) {
fprintf(stderr, "open failed: %s\n", TEST_DATA);
return false;
}
reader.read(data, labels);
test_reader.read(test_data, *dummy_labels);
reader.close();
test_reader.close();
delete dummy_labels;
return true;
}
void
make_submission(const std::vector<std::pair<int, std::vector<int> > > &submission)
{
FILE *fp = fopen(SUBMISSION, "w");
fprintf(fp, "Id,Predicted\n");
for (auto i = submission.begin(); i != submission.end(); ++i) {
bool first = true;
fprintf(fp, "%d,", i->first + 1);
for (auto j = i->second.begin(); j != i->second.end(); ++j) {
if (first) {
first = false;
} else {
fprintf(fp, " ");
}
fprintf(fp, "%d", *j);
}
fprintf(fp, "\n");
}
fclose(fp);
}
int main(void)
{
std::vector<fv_t> test_data;
std::vector<label_t> test_labels;
TFIDFTransformer transformer;
NearestCentroidClassifier centroid;
ClassifierStorage classifier_storage;
std::vector<std::pair<int, std::vector<int> > > submission;
long t = tick();
DataReader reader;
if (!classifier_storage.load(MODEL)) {
fprintf(stderr, "cant open classifier storage\n");
return -1;
}
if (!reader.open(TEST_DATA)) {
fprintf(stderr, "open failed: %s\n", TEST_DATA);
return -1;
}
reader.read(test_data, test_labels);
printf("read test: %ld, %ldms\n",
test_data.size(), tick() - t);
t = tick();
transformer.load(WEIGHT);
transformer.transform(test_data);
centroid.load(CENTROID);
t = tick();
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 1)
#endif
for (int id = 0; id < (int)test_data.size(); ++id) {
std::vector<int> topn_labels;
std::vector<int> results;
centroid.predict(results, K_PREDICT, test_data[id]);
predict_labels(topn_labels, test_data[id], results, classifier_storage);
#ifdef _OPENMP
#pragma omp critical (submission)
#endif
{
submission.push_back(std::make_pair(id, topn_labels));
if (id % 10000 == 0) {
printf("--- predict %d/%ld %ldms\n", id, test_data.size(), tick() -t);
t = tick();
}
}
}
std::sort(submission.begin(), submission.end());
make_submission(submission);
return 0;
}