-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvdi.cpp
1649 lines (1301 loc) · 50.4 KB
/
vdi.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// Implementation of the VDI file class
//
#include "vdi.h"
#include <bitset>
#include <cmath>
#include <cstring>
#include <iomanip>
#include <iostream>
// only constructor, takes path to VDI file
vdi::vdi(const char *filePath) : filePath(filePath) {
// open the VDI file with the path given
VDI_file.open(filePath, std::ios::in | std::ios::out | std::ios::binary);
// fill out the header struct with the opened file
setHeader();
// fill out the partition table struct with the opened file
setPartitionTable();
// fill out the superblock struct with the opened file
setSuperblock();
// get file size
VDI_file.seekg(0, std::ios::end);
fileSize = VDI_file.tellg();
// get the start location of the virtual disk
partitionOpen(1);
diskStart = openedPartitionStart;
partitionClose();
// fill out the array of "block group descriptor table" structs with the opened file
bgdt = new blockGroupDescriptorTable[superblock.blockGroupCount];
fetchBGDT(bgdt, 1);
/* TODO:
* The pointer "bgdt" will cause a memory leak. This is intentional because this program is meant to do one task very
* quickly and then close. If this vdi class is ever extended to be used in another program that has a longer runtime
* then "bgdt" needs to be properly deleted when it is no longer needed. Until then, leaving the memory leak in allows
* the program to run a bit quicker with no negative side effects. Small popular programs such as GNU's "ls" use this
* technique https://lists.gnu.org/archive/html/bug-coreutils/2011-05/msg00065.html
*/
// reset file cursor
VDI_file.seekg(0);
// this is needed or future 'tellg()' calls return -1
VDI_file.clear();
}
// read 'size' amount bytes from VDI into buffer (starting at cursor)
void vdi::read(char *buffer, std::streamsize size) {
// forward parameters to the builtin 'fstream' method
VDI_file.read(buffer, size);
// this is needed or future 'tellg()' calls return -1
VDI_file.clear();
}
// write 'size' amount bytes from 'buffer' to VDI (starting at cursor)
// TODO: unused function, commented out for now
// void vdi::write(const char *buffer, std::streamsize size) {
// // forward parameters to the builtin 'fstream' method
// VDI_file.write(buffer, size);
// // this is needed or future 'tellg()' calls return -1
// VDI_file.clear();
// }
// sets the position of the file cursor to byte 'position' inside the virtual disk
void vdi::seek(std::ios::pos_type position) {
// offset position to start at the beginning of the disk
position += diskStart;
// forward parameters to the builtin 'fstream' method
VDI_file.seekg(position);
}
// offsets the file cursor by 'offset' starting from 'direction' (beg, cur, end)
// (beg = start of the VDI's disk space, cur = current cursor position, end = end of opened VDI file)
void vdi::seek(std::ios::off_type offset, std::ios_base::seekdir direction) {
// if the user wants to start at the beginning of the disk
if (direction == std::ios::beg) {
// offset position to start at the beginning of the disk
offset += diskStart;
}
// forward parameters to the builtin 'fstream' method
VDI_file.seekg(offset, direction);
}
// gets the position of the cursor within the VDI file
// TODO: unused function, commented out for now
// std::ios::pos_type vdi::cursor() { return VDI_file.tellg(); }
// prints the given buffer in both hexadecimal and characters ('size' = length of buffer)
// TODO: unused function, commented out for now
// void vdi::printBuffer(const char *buffer, uint32_t size) {
// // save existing cout settings (to restore later)
// std::ios_base::fmtflags oldFlags(std::cout.flags());
// // loop through entire 'buffer'
// for (uint32_t i = 0; i < size; ++i) {
// // condition is true every 16 loops
// if (i % 16 == 0 && i != 0) {
// // move 4 spaces away from hex block
// std::cout << " ";
// // loop through the previous 16 again
// for (uint32_t j = i - 16; j < i; ++j) {
// if ((int)buffer[j] >= 32 && (int)buffer[j] <= 126) {
// // only print readable characters
// std::cout << buffer[j];
// } else {
// // print space if character is garbage
// std::cout << " ";
// }
// }
// // end line
// std::cout << std::endl;
// }
// // convert current char to unsigned 8-bit int
// uint8_t byte = buffer[i];
// // print each hex in uppercase with 2 places of precision with a space afterward
// std::cout << std::hex << std::uppercase << std::setfill('0') << std::setw(2) << (int)byte << " ";
// }
// // still need to print one more line of normal text
// // if the final hex line is not a full line
// if (size % 16 != 0) {
// for (uint32_t i = 0; i < (16 - (size % 16)) * 3; ++i) {
// // fill the remaining area with spaces
// std::cout << " ";
// }
// }
// // move 4 spaces away from hex block
// std::cout << " ";
// // loop through the remainder of the buffer to print the final line of text
// for (uint32_t i = size - (size - (size % 16) == size ? 16 : size % 16); i < size; ++i) {
// if ((int)buffer[i] >= 32 && (int)buffer[i] <= 126) {
// // only print readable characters
// std::cout << buffer[i];
// } else {
// // print space if character is garbage
// std::cout << " ";
// }
// }
// // end line
// std::cout << std::endl;
// // restore cout settings
// std::cout.flags(oldFlags);
// }
// converts the given character buffer from little endian to a single uint64_t ('size' = length of buffer)
// note: 'size' should never be greater than 8
uint64_t vdi::littleEndianToInt(const char *buffer, uint8_t size) {
// input error checking
if (size > 8) {
throw std::invalid_argument("'size' should never be greater than 8");
}
// copy the buffer memory into a 64-bit int
uint64_t result;
memcpy(&result, buffer, size);
return result;
}
// converts an int to a hex in little endian format and places the result into a character buffer
// (buffer size of 4 will hold the full int, less than 4 will truncate)
// TODO: unused function, commented out for now
// void vdi::intToLittleEndianHex(char *buffer, uint32_t bufferSize, uint32_t num) {
// // check that the buffer size is between 1 and 4
// if (bufferSize < 1 || bufferSize > 4) {
// throw std::invalid_argument("buffer size must be between 1 and 4");
// }
// // convert the number depending on the 'bufferSize'
// if (bufferSize >= 1) {
// buffer[0] = static_cast<char>(num & 0xFF);
// }
// if (bufferSize >= 2) {
// buffer[1] = static_cast<char>((num >> 8) & 0xFF);
// }
// if (bufferSize >= 3) {
// buffer[2] = static_cast<char>((num >> 16) & 0xFF);
// }
// if (bufferSize == 4) {
// buffer[3] = static_cast<char>((num >> 24) & 0xFF);
// }
// }
// sets the values in the header struct
void vdi::setHeader() {
// temporary buffer for reading in header values
char buffer[8];
// get image type (1 = dynamic, 2 = static)
VDI_file.seekg(0x4c);
VDI_file.read(buffer, 4);
header.imageType = littleEndianToInt(buffer, 4);
// get offset blocks
VDI_file.seekg(0x154);
VDI_file.read(buffer, 4);
header.offsetBlocks = littleEndianToInt(buffer, 4);
// get offset data
VDI_file.read(buffer, 4);
header.offsetData = littleEndianToInt(buffer, 4);
// get sector size
VDI_file.seekg(0x168);
VDI_file.read(buffer, 4);
header.sectorSize = littleEndianToInt(buffer, 4);
// get disk size
VDI_file.seekg(0x170);
VDI_file.read(buffer, 8);
header.diskSize = littleEndianToInt(buffer, 8);
// get block size
VDI_file.read(buffer, 4);
header.blockSize = littleEndianToInt(buffer, 4);
// get blocks in HDD
VDI_file.seekg(0x180);
VDI_file.read(buffer, 4);
header.blocksInHDD = littleEndianToInt(buffer, 4);
// get blocks allocated
VDI_file.read(buffer, 4);
header.blocksAllocated = littleEndianToInt(buffer, 4);
}
// sets the values of the partition table
void vdi::setPartitionTable() {
// temporary buffer for reading in partition entry values
char buffer[4];
// move cursor to start of partition table
VDI_file.seekg(header.offsetData + 0x1be);
// loop through all 4 partition entries in the partition table
for (auto &entry : partitionTable) {
// get status (active/inactive)
VDI_file.read(buffer, 1);
entry.status = littleEndianToInt(buffer, 1);
// get first sector CHS
VDI_file.read(buffer, 1);
entry.firstSectorCHS[1] = littleEndianToInt(buffer, 1);
VDI_file.read(buffer, 1);
entry.firstSectorCHS[2] = littleEndianToInt(buffer, 1);
VDI_file.read(buffer, 1);
entry.firstSectorCHS[0] = littleEndianToInt(buffer, 1);
// get partition type
VDI_file.read(buffer, 1);
entry.type = littleEndianToInt(buffer, 1);
// get last sector CHS
VDI_file.read(buffer, 1);
entry.lastSectorCHS[1] = littleEndianToInt(buffer, 1);
VDI_file.read(buffer, 1);
entry.lastSectorCHS[2] = littleEndianToInt(buffer, 1);
VDI_file.read(buffer, 1);
entry.lastSectorCHS[0] = littleEndianToInt(buffer, 1);
// get first LBA sector
VDI_file.read(buffer, 4);
entry.first_LBA_sector = littleEndianToInt(buffer, 4);
// get LBA sector count
VDI_file.read(buffer, 4);
entry.LBA_sector_count = littleEndianToInt(buffer, 4);
}
}
// open a partition by its number (1-4)
void vdi::partitionOpen(int number) {
// check for valid partition number
if (number < 1 || number > 4) {
throw std::invalid_argument("partition number must be 1-4, received: " + std::to_string(number));
}
// check that the selected partition is formatted
if (partitionTable[number - 1].LBA_sector_count == 0) {
throw std::runtime_error("partition " + std::to_string(number) + " is not formatted and cannot be opened");
}
// set opened partition
openedPartition = number;
// set opened partition start and end locations
openedPartitionStart = (partitionTable[number - 1].first_LBA_sector * header.sectorSize) + header.offsetData;
openedPartitionEnd = (openedPartitionStart + partitionTable[number - 1].LBA_sector_count) + header.offsetData;
// set cursor to the start of the partition
VDI_file.seekg(openedPartitionStart);
}
// close the opened partition (only one can be opened at a time)
void vdi::partitionClose() {
openedPartition = 0;
openedPartitionStart = 0;
openedPartitionEnd = 0;
}
// read 'size' amount bytes from the opened partition into buffer (starting at cursor)
void vdi::partitionRead(char *buffer, std::streamsize size) {
// check that a partition is opened
if (openedPartition == 0) {
throw std::runtime_error("cannot read, no partition is opened");
}
// check that the cursor is within the opened partition
if (VDI_file.tellg() < openedPartitionStart || VDI_file.tellg() > openedPartitionEnd) {
throw std::out_of_range("cannot read, cursor is out of bounds of the opened partition");
}
// check that the size to read isn't too big
if ((VDI_file.tellg() + size) > openedPartitionEnd) {
throw std::out_of_range("cannot read, size to read is too large and exceeds the bounds of the opened partition");
}
// read into given buffer
VDI_file.read(buffer, size);
// this is needed or future 'tellg()' calls return -1
VDI_file.clear();
}
// write 'size' amount bytes from 'buffer' to the opened partition (starting at cursor)
// TODO: unused function, commented out for now
// void vdi::partitionWrite(const char *buffer, std::streamsize size) {
// // check that a partition is opened
// if (openedPartition == 0) {
// throw std::runtime_error("cannot write, no partition is opened");
// }
// // check that the cursor is within the opened partition
// if (VDI_file.tellg() < openedPartitionStart || VDI_file.tellg() > openedPartitionEnd) {
// throw std::out_of_range("cannot write, cursor is out of bounds of the opened partition");
// }
// // check that the size to write isn't too big
// if ((VDI_file.tellg() + size) > openedPartitionEnd) {
// throw std::out_of_range("cannot write, size to write is too large and exceeds the bounds of the opened
// partition");
// }
// // write buffer to the partition
// VDI_file.write(buffer, size);
// // this is needed or future 'tellg()' calls return -1
// VDI_file.clear();
// }
// sets the position of the file cursor to byte 'position' (0 = start of the opened partition)
void vdi::partitionSeek(std::ios::pos_type position) {
// offset the position
position += openedPartitionStart;
// check that a partition is opened
if (openedPartition == 0) {
throw std::runtime_error("cannot seek, no partition is opened");
}
// check that the desired position is within the bounds of the opened partition
if (position < openedPartitionStart || position > openedPartitionEnd) {
throw std::out_of_range("cannot seek, the given position is outside the range of the opened partition");
}
// seek to 'position'
VDI_file.seekg(position);
}
// offsets the file cursor by 'offset' starting from 'direction' (beg, cur, end)
// (beg = start of opened partition, cur = current cursor position, end = end of opened partition)
void vdi::partitionSeek(std::ios::off_type offset, std::ios_base::seekdir direction) {
// check that a partition is opened
if (openedPartition == 0) {
throw std::runtime_error("cannot seek, no partition is opened");
}
// position to be moved to (after calculations)
uint32_t position = 0;
// check that the desired position is within the bounds of the opened partition
switch (direction) {
case std::ios::beg:
// check bounds
if (offset < 0 || offset > (openedPartitionEnd - openedPartitionStart)) {
throw std::out_of_range("cannot seek, the given position is outside the range of the opened partition");
}
// calculate position
position = openedPartitionStart + offset;
break;
case std::ios::cur:
// check bounds
if ((VDI_file.tellg() + offset) < openedPartitionStart || (VDI_file.tellg() + offset) > openedPartitionEnd) {
throw std::out_of_range("cannot seek, the given position is outside the range of the opened partition");
}
// calculate position
position = VDI_file.tellg() + offset;
break;
case std::ios::end:
// check bounds
if (offset > 0 || (offset + openedPartitionEnd) < openedPartitionStart) {
throw std::out_of_range("cannot seek, the given position is outside the range of the opened partition");
}
// calculate position
position = offset + openedPartitionEnd;
break;
default:
throw std::invalid_argument("'direction' argument is invalid, must be 'beg', 'cur', or 'end'");
}
// seek to desired offset
VDI_file.seekg(position);
}
// sets the values in the superblock struct
void vdi::setSuperblock() {
// temporary buffer for reading in superblock values
char buffer[4];
// move cursor to start of main superblock
partitionOpen(1);
partitionSeek(1024);
// get inode count
partitionRead(buffer, 4);
superblock.inodeCount = littleEndianToInt(buffer, 4);
// get block count
partitionRead(buffer, 4);
superblock.blockCount = littleEndianToInt(buffer, 4);
// get reserved block count
partitionRead(buffer, 4);
superblock.reservedBlockCount = littleEndianToInt(buffer, 4);
// get free block count
partitionRead(buffer, 4);
superblock.freeBlockCount = littleEndianToInt(buffer, 4);
// get free inode count
partitionRead(buffer, 4);
superblock.freeInodeCount = littleEndianToInt(buffer, 4);
// get first data block
partitionRead(buffer, 4);
superblock.firstDataBlock = littleEndianToInt(buffer, 4);
// get log block size
partitionRead(buffer, 4);
superblock.logBlockSize = littleEndianToInt(buffer, 4);
// get log fragment size
partitionRead(buffer, 4);
superblock.logFragmentSize = littleEndianToInt(buffer, 4);
// get blocks per group
partitionRead(buffer, 4);
superblock.blocksPerGroup = littleEndianToInt(buffer, 4);
// get fragments per group
partitionRead(buffer, 4);
superblock.fragmentsPerGroup = littleEndianToInt(buffer, 4);
// get inodes per group
partitionRead(buffer, 4);
superblock.inodesPerGroup = littleEndianToInt(buffer, 4);
// get magic number
partitionSeek(12, std::ios::cur);
partitionRead(buffer, 2);
superblock.magicNumber = littleEndianToInt(buffer, 2);
// check that the magic number is correct
if (superblock.magicNumber != 0xef53) {
throw std::runtime_error("invalid ext2 superblock (magic number does not match)");
}
// get state
partitionRead(buffer, 2);
superblock.state = littleEndianToInt(buffer, 2);
// get first inode number
partitionSeek(24, std::ios::cur);
partitionRead(buffer, 4);
superblock.firstInodeNumber = littleEndianToInt(buffer, 4);
// get inode size
partitionRead(buffer, 2);
superblock.inodeSize = littleEndianToInt(buffer, 2);
// get block size
superblock.blockSize = (uint32_t)1024 << superblock.logBlockSize;
// get block group count
superblock.blockGroupCount = ceil((double)superblock.blockCount / (double)superblock.blocksPerGroup);
// close the partition
partitionClose();
}
// get the VDI file's byte location of the desired block number
uint32_t vdi::locateBlock(uint32_t blockNum) const {
return (blockNum * superblock.blockSize) + (superblock.firstDataBlock * superblock.blockSize);
}
// read the block indicated by 'blockNum' into the buffer (buffer must be at least size 'superblock.blockSize')
void vdi::fetchBlock(char *buffer, uint32_t blockNum) {
// set file cursor to the start of the desired block
seek(locateBlock(blockNum));
// read block into buffer
read(buffer, superblock.blockSize);
}
// write the contents of the buffer into the block indicated by 'blockNum'
// (buffer cannot be bigger than 'superblock.blockSize')
// TODO: unused function, commented out for now
// void vdi::writeBlock(const char *buffer, uint32_t blockNum) {
// // set file cursor to the start of the desired block
// seek(locateBlock(blockNum));
// // write buffer into block
// write(buffer, superblock.blockSize);
// }
// read the superblock into the supplied structure at the specified block number
void vdi::fetchSuperblock(struct vdi::superblock &sb, uint32_t blockNum) {
// temporary buffer for reading in superblock values
char buffer[4];
// calculate the start of the desired block
uint32_t blockStart = locateBlock(blockNum);
if (blockNum == 0 && superblock.firstDataBlock == 0) {
// attempting to get main superblock of non-1kb system
// move block start another kb to reach superblock start
blockStart += 1024;
}
// skip file cursor to the magic number (for error checking)
seek(blockStart + 56);
// get magic number
read(buffer, 2);
sb.magicNumber = littleEndianToInt(buffer, 2);
// check that the magic number is correct
if (sb.magicNumber != superblock.magicNumber) {
throw std::runtime_error(
"cannot fetch superblock, block does not contain a superblock (magic number does not match)");
}
// move cursor back to the start of the block
seek(blockStart);
// get inode count
read(buffer, 4);
sb.inodeCount = littleEndianToInt(buffer, 4);
// get block count
read(buffer, 4);
sb.blockCount = littleEndianToInt(buffer, 4);
// get reserved block count
read(buffer, 4);
sb.reservedBlockCount = littleEndianToInt(buffer, 4);
// get free block count
read(buffer, 4);
sb.freeBlockCount = littleEndianToInt(buffer, 4);
// get free inode count
read(buffer, 4);
sb.freeInodeCount = littleEndianToInt(buffer, 4);
// get first data block
read(buffer, 4);
sb.firstDataBlock = littleEndianToInt(buffer, 4);
// get log block size
read(buffer, 4);
sb.logBlockSize = littleEndianToInt(buffer, 4);
// get log fragment size
read(buffer, 4);
sb.logFragmentSize = littleEndianToInt(buffer, 4);
// get blocks per group
read(buffer, 4);
sb.blocksPerGroup = littleEndianToInt(buffer, 4);
// get fragments per group
read(buffer, 4);
sb.fragmentsPerGroup = littleEndianToInt(buffer, 4);
// get inodes per group
read(buffer, 4);
sb.inodesPerGroup = littleEndianToInt(buffer, 4);
// magic number already read, skip to state
seek(14, std::ios::cur);
// get state
read(buffer, 2);
sb.state = littleEndianToInt(buffer, 2);
// get first inode number
seek(24, std::ios::cur);
read(buffer, 4);
sb.firstInodeNumber = littleEndianToInt(buffer, 4);
// get inode size
read(buffer, 2);
sb.inodeSize = littleEndianToInt(buffer, 2);
// get block size
sb.blockSize = (uint32_t)1024 << sb.logBlockSize;
// get block group count
sb.blockGroupCount = ceil((double)sb.blockCount / (double)sb.blocksPerGroup);
}
// write the supplied superblock structure into the superblock at the specified block number
// TODO: unused function, commented out for now
// void vdi::writeSuperblock(const struct vdi::superblock &sb, uint32_t blockNum) {
// // try fetching the superblock to check that a superblock already exists at this block number
// try {
// struct superblock temp {};
// fetchSuperblock(temp, blockNum);
// } catch (const std::runtime_error &) {
// throw std::runtime_error(
// "cannot write superblock, block does not contain a superblock (magic number does not match)");
// }
// // calculate the start of the desired block
// uint32_t blockStart = locateBlock(blockNum);
// if (blockNum == 0 && superblock.firstDataBlock == 0) {
// // attempting to get main superblock of non-1kb system
// // move block start another kb to reach superblock start
// blockStart += 1024;
// }
// // move cursor to the start of the block
// seek(blockStart);
// // temporary buffer for holding converted superblock values
// char buffer[4];
// // write inode count
// intToLittleEndianHex(buffer, 4, sb.inodeCount);
// write(buffer, 4);
// // write block count
// intToLittleEndianHex(buffer, 4, sb.blockCount);
// write(buffer, 4);
// // write reserved block count
// intToLittleEndianHex(buffer, 4, sb.reservedBlockCount);
// write(buffer, 4);
// // write free block count
// intToLittleEndianHex(buffer, 4, sb.freeBlockCount);
// write(buffer, 4);
// // write free inode count
// intToLittleEndianHex(buffer, 4, sb.freeInodeCount);
// write(buffer, 4);
// // write first data block
// intToLittleEndianHex(buffer, 4, sb.firstDataBlock);
// write(buffer, 4);
// // write log block size
// intToLittleEndianHex(buffer, 4, sb.logBlockSize);
// write(buffer, 4);
// // write log fragment size
// intToLittleEndianHex(buffer, 4, sb.logFragmentSize);
// write(buffer, 4);
// // write blocks per group
// intToLittleEndianHex(buffer, 4, sb.blocksPerGroup);
// write(buffer, 4);
// // write fragments per group
// intToLittleEndianHex(buffer, 4, sb.fragmentsPerGroup);
// write(buffer, 4);
// // write inodes per group
// intToLittleEndianHex(buffer, 4, sb.inodesPerGroup);
// write(buffer, 4);
// // write magic number
// seek(12, std::ios::cur);
// intToLittleEndianHex(buffer, 2, sb.magicNumber);
// write(buffer, 2);
// // write state
// intToLittleEndianHex(buffer, 2, sb.state);
// write(buffer, 2);
// // write first inode number
// seek(24, std::ios::cur);
// intToLittleEndianHex(buffer, 4, sb.firstInodeNumber);
// write(buffer, 4);
// // write inode size
// intToLittleEndianHex(buffer, 2, sb.inodeSize);
// write(buffer, 2);
// }
// read the block group descriptor table into the supplied structure at the specified block number
void vdi::fetchBGDT(struct vdi::blockGroupDescriptorTable *bgdt, uint32_t blockNum) {
// check that the user is attempting to fetch a valid BGDT (try fetching the superblock at 'blockNum' - 1)
try {
struct superblock temp {};
fetchSuperblock(temp, blockNum - 1);
} catch (const std::runtime_error &) {
throw std::runtime_error("cannot fetch BGDT, block does not contain a BGDT (no superblock in the block before it)");
}
// temporary buffer for reading in BGDT values
char buffer[4];
// calculate the start of the desired block
uint32_t blockStart = locateBlock(blockNum);
// move cursor to the start of the block
seek(blockStart);
// loop through each row of the table
for (uint32_t i = 0; i < superblock.blockGroupCount; ++i) {
// get block bitmap
read(buffer, 4);
bgdt[i].blockBitmap = littleEndianToInt(buffer, 4);
// get inode bitmap
read(buffer, 4);
bgdt[i].inodeBitmap = littleEndianToInt(buffer, 4);
// get inode table
read(buffer, 4);
bgdt[i].inodeTable = littleEndianToInt(buffer, 4);
// get free blocks count
read(buffer, 2);
bgdt[i].freeBlocksCount = littleEndianToInt(buffer, 2);
// get free inodes count
read(buffer, 2);
bgdt[i].freeInodesCount = littleEndianToInt(buffer, 2);
// get used directories count
read(buffer, 2);
bgdt[i].usedDirsCount = littleEndianToInt(buffer, 2);
// skip cursor to next row
seek(14, std::ios::cur);
}
}
// write the supplied block group descriptor table structure into the block group descriptor table
// at the specified block number
// TODO: unused function, commented out for now
// void vdi::writeBGDT(const struct vdi::blockGroupDescriptorTable *bgdt, uint32_t blockNum) {
// // check that the user is attempting to write to a valid BGDT (try fetching the superblock at 'blockNum' - 1)
// try {
// struct superblock temp {};
// fetchSuperblock(temp, blockNum - 1);
// } catch (const std::runtime_error &) {
// throw std::runtime_error("cannot write BGDT, block does not contain a BGDT (no superblock in the block before
// it)");
// }
// // temporary buffer for holding converted BGDT values
// char buffer[4];
// // calculate the start of the desired block
// uint32_t blockStart = locateBlock(blockNum);
// // move cursor back to the start of the block
// seek(blockStart);
// // loop through each row of the table
// for (uint32_t i = 0; i < superblock.blockGroupCount; ++i) {
// // get block bitmap
// intToLittleEndianHex(buffer, 4, bgdt[i].blockBitmap);
// write(buffer, 4);
// // get inode bitmap
// intToLittleEndianHex(buffer, 4, bgdt[i].inodeBitmap);
// write(buffer, 4);
// // get inode table
// intToLittleEndianHex(buffer, 4, bgdt[i].inodeTable);
// write(buffer, 4);
// // get free blocks count
// intToLittleEndianHex(buffer, 2, bgdt[i].freeBlocksCount);
// write(buffer, 2);
// // get free inodes count
// intToLittleEndianHex(buffer, 2, bgdt[i].freeInodesCount);
// write(buffer, 2);
// // get used directories count
// intToLittleEndianHex(buffer, 2, bgdt[i].usedDirsCount);
// write(buffer, 2);
// // skip cursor to next row
// seek(14, std::ios::cur);
// }
// }
// read the inode at the specified inode index into an inode structure
void vdi::fetchInode(vdi::inode &in, uint32_t iNum) {
// error checking
if (iNum == 0) {
throw std::invalid_argument("cannot fetch inode, inode number cannot be zero");
}
// calculate block group that the inode belongs to
uint32_t blockGroup = (iNum - 1) / superblock.inodesPerGroup;
// calculate local inode index within that block group
uint32_t localIndex = (iNum - 1) % superblock.inodesPerGroup;
// move cursor to the start of the desired inode
seek(locateBlock(bgdt[blockGroup].inodeTable - superblock.firstDataBlock) + (localIndex * superblock.inodeSize));
// temporary buffer for reading in inode values
char buffer[4];
// get mode
read(buffer, 2);
in.mode = littleEndianToInt(buffer, 2);
// get user id
read(buffer, 2);
in.uid = littleEndianToInt(buffer, 2);
// get size
read(buffer, 4);
in.size = littleEndianToInt(buffer, 4);
// get accessed time
read(buffer, 4);
in.atime = littleEndianToInt(buffer, 4);
// get created time
read(buffer, 4);
in.ctime = littleEndianToInt(buffer, 4);
// get modified time
read(buffer, 4);
in.mtime = littleEndianToInt(buffer, 4);
// get deleted time
read(buffer, 4);
in.dtime = littleEndianToInt(buffer, 4);
// get group id
read(buffer, 2);
in.gid = littleEndianToInt(buffer, 2);
// get links count
read(buffer, 2);
in.linksCount = littleEndianToInt(buffer, 2);
// get 'blocks' (total number of 512-bytes blocks reserved to contain the data of this inode)
// note: maximum index of the 'block' array is computed with: blocks / (2 << superblock.logBlockSize)
read(buffer, 4);
in.blocks = littleEndianToInt(buffer, 4);
// get flags
// note: flag definition table: https://www.nongnu.org/ext2-doc/ext2.html#i-flags
read(buffer, 4);
in.flags = littleEndianToInt(buffer, 4);
// get the block array (15 4-byte values)
seek(4, std::ios::cur);
for (uint32_t &i : in.block) {
read(buffer, 4);
i = littleEndianToInt(buffer, 4);
}
// get file version
read(buffer, 4);
in.generation = littleEndianToInt(buffer, 4);
// get ACL block
read(buffer, 4);
in.aclBlock = littleEndianToInt(buffer, 4);
}
// write the given inode structure at the specified inode index
// TODO: unused function, commented out for now
// void vdi::writeInode(const vdi::inode &in, uint32_t iNum) {
// // error checking
// if (iNum == 0) {
// throw std::invalid_argument("cannot write inode, inode number cannot be zero");
// }
// // calculate block group that the inode belongs to
// uint32_t blockGroup = (iNum - 1) / superblock.inodesPerGroup;
// // calculate local inode index within that block group
// uint32_t localIndex = (iNum - 1) % superblock.inodesPerGroup;
// // move cursor to the start of the desired inode
// seek(locateBlock(blockGroupDescriptorTable[blockGroup].inodeTable - superblock.firstDataBlock) +
// (localIndex * superblock.inodeSize));
// // temporary buffer for holding converted inode values
// char buffer[4];
// // write mode
// intToLittleEndianHex(buffer, 2, in.mode);
// write(buffer, 2);
// // write user id
// intToLittleEndianHex(buffer, 2, in.uid);
// write(buffer, 2);
// // write size
// intToLittleEndianHex(buffer, 4, in.size);
// write(buffer, 4);
// // write accessed time
// intToLittleEndianHex(buffer, 4, in.atime);
// write(buffer, 4);
// // write created time
// intToLittleEndianHex(buffer, 4, in.ctime);
// write(buffer, 4);
// // write modified time
// intToLittleEndianHex(buffer, 4, in.mtime);
// write(buffer, 4);
// // write deleted time
// intToLittleEndianHex(buffer, 4, in.dtime);
// write(buffer, 4);
// // write group id
// intToLittleEndianHex(buffer, 2, in.gid);
// write(buffer, 2);
// // write links count
// intToLittleEndianHex(buffer, 2, in.linksCount);
// write(buffer, 2);
// // write 'blocks' (total number of 512-bytes blocks reserved to contain the data of this inode)
// intToLittleEndianHex(buffer, 4, in.blocks);
// write(buffer, 4);
// // write flags
// intToLittleEndianHex(buffer, 4, in.flags);
// write(buffer, 4);
// // write the block array (15 4-byte values)
// seek(4, std::ios::cur);
// for (uint32_t i : in.block) {
// intToLittleEndianHex(buffer, 4, i);
// write(buffer, 4);
// }
// // write file version
// intToLittleEndianHex(buffer, 4, in.generation);
// write(buffer, 4);
// // write ACL block
// intToLittleEndianHex(buffer, 4, in.aclBlock);