-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathset_study.py
51 lines (43 loc) · 1.31 KB
/
set_study.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse
import sys
parser = argparse.ArgumentParser()
parser.add_argument('--study', default='number_of_graders', type=str, help='Run the desired study')
args = parser.parse_args()
study = args.study
studies = [
'number_of_graders',
'graders_bias',
'ground_truth_distribution',
'working_impact_grading',
'erdos',
'homophily',
'real_data_peer_evaluation',
'real_data_peer_and_self_evaluation',
'custom'
]
if study not in studies:
print("please selest a valid study identifier")
sys.exit()
# study = "custom"
# unique identifiers that you can use to reproduce studies in paper:
# 1 -> 'number_of_graders',
# 2 -> 'graders_bias',
# 3 -> 'ground_truth_distribution',
# 4 -> 'working_impact_grading',
# 5 -> 'erdos',
# 6 -> 'homophily'
# 7 -> 'real_data_peer_evaluation'
# 8 -> 'real_data_peer_and_self_evaluation'
# 9 -> 'custom'
custom_study = {
'class_size': 500,
'number_of_graders': 3,
'left_peak_mean': 0.3, # if you choose normal distribution left_peak_mean will be ignored.
'left_peak_std': 0.1, # if you choose normal distribution left_peak_std will be ignored.
'right_peak_mean': 0.7,
'right_peak_std': 0.1,
'distribution': 'bidmoal', # possible values: bimodal | normal
'graders_std': 0.25,
'graders_bias': 0.0
}
Fast_TunedModel = True