Skip to content

Latest commit

 

History

History

Esp32PulseCounter

🌶️ - ESP32 Pulse Counter sample

Shows how to use the ESP32 Pulse Counter API allowing your count pulses on GPIO pins.

  • Create a specific Pulse Count GPIO pins
  • Read counter of input GPIO pins

Hardware requirements

Any hardware device running a nanoFramework image built with GPIO support enabled.

Related topics

Samples

Pulse counter allows to count pulses without having to setup a GPIO controller and events. It's a fast way to get count during a specific amount of time. This pulse counter allows as well to use 2 different pins and get a pulse count depending on their respective polarities.

Pulse Counter with 1 pin

The following code illustrate how to setup a counter for 1 pin:

GpioPulseCounter counter = new GpioPulseCounter(26);
counter.Polarity = GpioPulsePolarity.Rising;
counter.FilterPulses = 0;

counter.Start();
int inc = 0;
GpioPulseCount counterCount;
while (inc++ < 100)
{
    counterCount = counter.Read();
    Console.WriteLine($"{counterCount.RelativeTime}: {counterCount.Count}");
    Thread.Sleep(1000);
}

counter.Stop();
counter.Dispose();

The counter will always be positive and incremental. You can reset to 0 the count by calling the Reset function:

GpioPulseCount pulses = counter.Reset();
// pulses.Count contains the actual count, it is then put to 0 once the function is called

Pulse Counter with 2 pins

This is typically a rotary encoder scenario. In this case, you need 2 pins and they'll act like in this graphic:**

rotary encoder principal

You can then use a rotary encoder connected to 2 pins:

rotary encoder

The associated code is the same as for 1 pin except in the constructor:

GpioPulseCounter encoder = new GpioPulseCounter(12, 14);
encoder.Start();
int incEncod = 0;
GpioPulseCount counterCountEncode;
while (incEncod++ < 100)
{
    counterCountEncode = encoder.Read();
    Console.WriteLine($"{counterCountEncode.RelativeTime}: {counterCountEncode.Count}");
    Thread.Sleep(1000);
}

encoder.Stop();
encoder.Dispose();

As a result, you'll get positives and negative pulses.

Reference

nanoFramework.Hardware.Esp32

System requirements

Build the sample

  1. Start Microsoft Visual Studio 2019 (VS 2017 should be OK too) and select File > Open > Project/Solution.
  2. Starting in the folder where you unzipped the samples/cloned the repository, go to the subfolder for this specific sample. Double-click the Visual Studio Solution (.sln) file.
  3. Press Ctrl+Shift+B, or select Build > Build Solution.

Run the sample

The next steps depend on whether you just want to deploy the sample or you want to both deploy and run it.

Deploying the sample

  • Select Build > Deploy Solution.

Deploying and running the sample

  • To debug the sample and then run it, press F5 or select Debug > Start Debugging.

Important: Before deploying or running the sample, please make sure your device is visible in the Device Explorer. Tip: To display the Device Explorer, go to Visual Studio menus: View > Other Windows > Device Explorer.