-
Notifications
You must be signed in to change notification settings - Fork 2
/
adults.out
237 lines (160 loc) · 6.17 KB
/
adults.out
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
Reading file...
File read complete
Filling all missing values with mean(continuous) or mode(categorical)
Filled missing values for workclass
Filled missing values for occupation:
Filled missing values for native-country:
DISCRETIZING ALL CONTINUOUS VARIABLES
Discretizing data for hours-per-week:
Splitting hours-per-week: at the following values:
[2.5, 34.5, 39.5, 41.5, 43.5, 46.5, 49.5, 50.5, 61.5, 90.5]
Discretizing data for age
Splitting age at the following values:
[21.5, 23.5, 24.5, 27.5, 30.5, 33.5, 35.5, 41.5, 61.5, 67.5]
Discretizing data for education-num:
Splitting education-num: at the following values:
[1.5, 2.5, 7.5, 8.5, 9.5, 10.5, 12.5, 13.5, 14.5, 15.5]
Discretizing data for capital-loss:
Splitting capital-loss: at the following values:
[1524.5, 1568.5, 1748.0, 1820.5, 1881.5, 1927.5, 1978.5, 2218.5, 2364.5, 3089.5]
Discretizing data for fnlwgt:
Splitting fnlwgt: at the following values:
[37674.0, 37719.0, 42869.0, 75734.0, 209532.0, 209589.0, 209813.0, 210481.0, 316808.5, 392849.0]
Discretizing data for capital-gain:
Splitting capital-gain: at the following values:
[4243.5, 4401.0, 5119.0, 5638.5, 6457.5, 6563.0, 7055.5, 10041.0, 10585.5, 30961.5]
BEGINNING VALIDATION
Creating Model Number 1
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.831695331695
Micro Recall: 0.831695331695
Micro F1: 0.831695331695
Macro Precision: 0.772633790378
Macro Recall: 0.813468573443
Macro F1: 0.787965436868
Accuracy: 0.831695331695
Creating Model Number 2
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.8319000819
Micro Recall: 0.8319000819
Micro F1: 0.8319000819
Macro Precision: 0.768272620447
Macro Recall: 0.817236726937
Macro F1: 0.785736442343
Accuracy: 0.8319000819
Creating Model Number 3
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.831490581491
Micro Recall: 0.831490581491
Micro F1: 0.831490581491
Macro Precision: 0.771920817564
Macro Recall: 0.81878990379
Macro F1: 0.788644302946
Accuracy: 0.831490581491
Creating Model Number 4
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.835380835381
Micro Recall: 0.835380835381
Micro F1: 0.835380835381
Macro Precision: 0.77586653042
Macro Recall: 0.822319061166
Macro F1: 0.792705619021
Accuracy: 0.835380835381
Creating Model Number 5
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.84009009009
Micro Recall: 0.84009009009
Micro F1: 0.84009009009
Macro Precision: 0.782627546942
Macro Recall: 0.820521354183
Macro F1: 0.797444212119
Accuracy: 0.84009009009
Creating Model Number 6
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.836609336609
Micro Recall: 0.836609336609
Micro F1: 0.836609336609
Macro Precision: 0.779064092279
Macro Recall: 0.825253378378
Macro F1: 0.795770609319
Accuracy: 0.836609336609
Creating Model Number 7
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.834152334152
Micro Recall: 0.834152334152
Micro F1: 0.834152334152
Macro Precision: 0.778169145734
Macro Recall: 0.822762804343
Macro F1: 0.794287917876
Accuracy: 0.834152334152
Creating Model Number 8
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.850122850123
Micro Recall: 0.850122850123
Micro F1: 0.850122850123
Macro Precision: 0.789052656362
Macro Recall: 0.834081954554
Macro F1: 0.806351849649
Accuracy: 0.850122850123
Creating Model Number 9
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.8319000819
Micro Recall: 0.8319000819
Micro F1: 0.8319000819
Macro Precision: 0.769003783604
Macro Recall: 0.815757369481
Macro F1: 0.785943702443
Accuracy: 0.8319000819
Creating Model Number 10
Training Bayesian Classifier with 43958 data entries.
Counting all variables:
Assigning probabilities:
Model creation complete
Micro Precision: 0.831285831286
Micro Recall: 0.831285831286
Micro F1: 0.831285831286
Macro Precision: 0.770395071207
Macro Recall: 0.816571743235
Macro F1: 0.787049683624
Accuracy: 0.831285831286
FINAL RESULTS
Model Number Micro Precision Micro Recall Micro F1 Macro Precision Macro Recall Macro F1 Accuracy
-------------- ----------------- -------------- ---------- ----------------- -------------- ---------- ----------
1 0.831695 0.831695 0.831695 0.772634 0.813469 0.787965 0.831695
2 0.8319 0.8319 0.8319 0.768273 0.817237 0.785736 0.8319
3 0.831491 0.831491 0.831491 0.771921 0.81879 0.788644 0.831491
4 0.835381 0.835381 0.835381 0.775867 0.822319 0.792706 0.835381
5 0.84009 0.84009 0.84009 0.782628 0.820521 0.797444 0.84009
6 0.836609 0.836609 0.836609 0.779064 0.825253 0.795771 0.836609
7 0.834152 0.834152 0.834152 0.778169 0.822763 0.794288 0.834152
8 0.850123 0.850123 0.850123 0.789053 0.834082 0.806352 0.850123
9 0.8319 0.8319 0.8319 0.769004 0.815757 0.785944 0.8319
10 0.831286 0.831286 0.831286 0.770395 0.816572 0.78705 0.831286
Average 0.835463 0.835463 0.835463 0.775701 0.820676 0.79219 0.835463