diff --git a/docs/Project.toml b/docs/Project.toml index f1aaf6d6e..1eeef1036 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -1,7 +1,9 @@ [deps] +Bibliography = "f1be7e48-bf82-45af-a471-ae754a193061" DiffEqUncertainty = "ef61062a-5684-51dc-bb67-a0fcdec5c97d" DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" +DocumenterCitations = "daee34ce-89f3-4625-b898-19384cb65244" Fenrir = "e9b4b195-f5cd-427c-8076-5358c553c37f" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" LiveServer = "16fef848-5104-11e9-1b77-fb7a48bbb589" diff --git a/docs/make.jl b/docs/make.jl index a2c0680e8..3bf7371ee 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -1,9 +1,35 @@ using Documenter using ProbNumDiffEq +using DocumenterCitations, Bibliography + +# DocumenterCitations.bib_sorting(::Val{:numeric}) = :nyt +# function DocumenterCitations.format_bibliography_label( +# ::Val{:numeric}, +# entry, +# citations::DocumenterCitations.OrderedDict{String,Int64}, +# ) +# key = entry.id +# sorted_bibtex_keys = citations |> keys |> collect |> sort +# i = findfirst(x -> x == key, sorted_bibtex_keys) +# @info "format_bibliography_label" entry.id citations sorted_bibtex_keys i entry.date +# return "[$i]" +# end +# Bibliography.sorting_rules[:nyt] = [:authors; :date; :title] + +bib = CitationBibliography( + joinpath(@__DIR__, "src", "refs.bib"), + style=:numeric, + # style=:authoryear, +) +sort_bibliography!(bib.entries, :nyt) # name-year-title + makedocs( + bib, sitename="ProbNumDiffEq.jl", - format=Documenter.HTML(), + format=Documenter.HTML( + assets=String["assets/citations.css"], + ), modules=[ProbNumDiffEq], pages=[ "Home" => "index.md", @@ -30,6 +56,7 @@ makedocs( "Filtering and Smoothing" => "filtering.md" "Implementation via OrdinaryDiffEq.jl" => "implementation.md" ], + "References" => "references.md", ], ) diff --git a/docs/src/assets/citations.css b/docs/src/assets/citations.css new file mode 100644 index 000000000..40a19a310 --- /dev/null +++ b/docs/src/assets/citations.css @@ -0,0 +1,17 @@ +.citation dl { + display: grid; + grid-template-columns: max-content auto; } +.citation dt { + grid-column-start: 1; } +.citation dd { + grid-column-start: 2; + margin-bottom: 0.75em; } +.citation ul { + padding: 0 0 2.25em 0; + margin: 0; + list-style: none;} +.citation ul li { + text-indent: -2.25em; + margin: 0.33em 0.5em 0.5em 2.25em;} +.citation ol li { + padding-left:0.75em;} diff --git a/docs/src/diffusions.md b/docs/src/diffusions.md index 199d6ff53..7e5bd8301 100644 --- a/docs/src/diffusions.md +++ b/docs/src/diffusions.md @@ -44,7 +44,7 @@ Or more compactly: | Time-fixed | [`FixedDiffusion`](@ref) | [`FixedMVDiffusion`](@ref) | -For more details on diffusions and calibration, check out this paper [[1]](@ref diffusionrefs). +For more details on diffusions and calibration, check out this paper [bosch20capos](@cite). ## API @@ -59,4 +59,9 @@ FixedMVDiffusion ## [References](@id diffusionrefs) -[1] N. Bosch, P. Hennig, F. Tronarp: **Calibrated Adaptive Probabilistic ODE Solvers** (2021) ([link](http://proceedings.mlr.press/v130/bosch21a.html)) +```@bibliography +Pages = [] +Canonical = false + +bosch20capos +``` diff --git a/docs/src/index.md b/docs/src/index.md index 392a7762f..69fcfb000 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -37,41 +37,6 @@ For a quick introduction check out the "[Solving ODEs with Probabilistic Numeric - Compatible with DAEs in mass-matrix ODE form (see [Solving DAEs with Probabilistic Numerics](@ref)) -## [References](@id references) - -The main references _for this package_ include: - -- N. Bosch, P. Hennig, F. Tronarp: - [**Probabilistic Exponential Integrators**](https://arxiv.org/abs/2305.14978) - (2023) -- N. Bosch, F. Tronarp, P. Hennig: - [**Pick-and-Mix Information Operators for Probabilistic ODE Solvers**](https://proceedings.mlr.press/v151/bosch22a.html) - (2022) -- N. Krämer, N. Bosch, J. Schmidt, P. Hennig: - [**Probabilistic ODE Solutions in Millions of Dimensions**](https://proceedings.mlr.press/v162/kramer22b.html) - (2022) -- N. Bosch, P. Hennig, F. Tronarp: - [**Calibrated Adaptive Probabilistic ODE Solvers**](http://proceedings.mlr.press/v130/bosch21a.html) - (2021) -- F. Tronarp, S. Särkkä, and P. Hennig: - [**Bayesian ODE Solvers: The Maximum A Posteriori Estimate**](https://link.springer.com/article/10.1007/s11222-021-09993-7) - (2021) -- N. Krämer, P. Hennig: - [**Stable Implementation of Probabilistic ODE Solvers**](https://arxiv.org/abs/2012.10106v1) - (2020) -- H. Kersting, T. J. Sullivan, and P. Hennig: - [**Convergence Rates of Gaussian Ode Filters**](https://link.springer.com/article/10.1007/s11222-020-09972-4) - (2020) -- F. Tronarp, H. Kersting, S. Särkkä, and P. Hennig: - [**Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective**](https://link.springer.com/article/10.1007/s11222-019-09900-1) - (2019) -- M. Schober, S. Särkkä, and P. Hennig: - [**A Probabilistic Model for the Numerical Solution of Initial Value Problems**](https://link.springer.com/article/10.1007/s11222-017-9798-7) - (2018) - -More references on ODE filters and on probabilistic numerics in general can be found on [probabilistic-numerics.org ](https://www.probabilistic-numerics.org/research/general/). - - ## Related packages - [probdiffeq](https://pnkraemer.github.io/probdiffeq/): Fast and feature-rich filtering-based probabilistic ODE solvers in JAX. diff --git a/docs/src/initialization.md b/docs/src/initialization.md index 3ed5f2bc7..7513f8e89 100644 --- a/docs/src/initialization.md +++ b/docs/src/initialization.md @@ -65,7 +65,13 @@ TaylorModeInit ClassicSolverInit ``` + ## [References](@id initrefs) -[1] N. Krämer, P. Hennig: **Stable Implementation of Probabilistic ODE Solvers** (2020) ([link](https://arxiv.org/abs/2012.10106)) -[2] M. Schober, S. Särkkä, and P. Hennig: **A Probabilistic Model for the Numerical Solution of Initial Value Problems** (2018) ([link](https://link.springer.com/article/10.1007/s11222-017-9798-7)) +```@bibliography +Pages = [] +Canonical = false + +kraemer20stableimplementation +schober16probivp +``` diff --git a/docs/src/references.md b/docs/src/references.md new file mode 100644 index 000000000..50b6a16dc --- /dev/null +++ b/docs/src/references.md @@ -0,0 +1,5 @@ +# [References](@id references) + +```@bibliography +* +``` diff --git a/docs/src/refs.bib b/docs/src/refs.bib new file mode 100644 index 000000000..136453adc --- /dev/null +++ b/docs/src/refs.bib @@ -0,0 +1,172 @@ +@misc{bosch23expint, + title = {Probabilistic Exponential Integrators}, + author = {Nathanael Bosch and Philipp Hennig and Filip Tronarp}, + year = 2023, + eprint = {2305.14978}, + archivePrefix ={arXiv}, + primaryClass = {math.NA} +} + +@InProceedings{krämer21highdim, + title = {Probabilistic {ODE} Solutions in Millions of Dimensions}, + author = {Krämer, Nicholas and Bosch, Nathanael and Schmidt, Jonathan + and Hennig, Philipp}, + booktitle = {Proceedings of the 39th International Conference on Machine + Learning}, + pages = {11634--11649}, + year = 2022, + editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and + Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, + volume = 162, + series = {Proceedings of Machine Learning Research}, + month = {17--23 Jul}, + publisher = {PMLR}, + pdf = {https://proceedings.mlr.press/v162/kramer22b/kramer22b.pdf}, + url = {https://proceedings.mlr.press/v162/kramer22b.html}, +} + +@InProceedings{bosch22pickandmix, + title = {Pick-and-Mix Information Operators for Probabilistic {ODE} + Solvers}, + author = {Bosch, Nathanael and Tronarp, Filip and Hennig, Philipp}, + booktitle = {Proceedings of The 25th International Conference on Artificial + Intelligence and Statistics}, + pages = {10015--10027}, + year = 2022, + editor = {Camps-Valls, Gustau and Ruiz, Francisco J. R. and Valera, + Isabel}, + volume = 151, + series = {Proceedings of Machine Learning Research}, + month = {28--30 Mar}, + publisher = {PMLR}, + pdf = {https://proceedings.mlr.press/v151/bosch22a/bosch22a.pdf}, + url = {https://proceedings.mlr.press/v151/bosch22a.html}, +} + +@InProceedings{bosch20capos, + title = {Calibrated Adaptive Probabilistic {ODE} Solvers}, + author = {Bosch, Nathanael and Hennig, Philipp and Tronarp, Filip}, + booktitle = {Proceedings of The 24th International Conference on Artificial + Intelligence and Statistics}, + pages = {3466--3474}, + year = 2021, + editor = {Banerjee, Arindam and Fukumizu, Kenji}, + volume = 130, + series = {Proceedings of Machine Learning Research}, + month = {13--15 Apr}, + publisher = {PMLR}, + pdf = {http://proceedings.mlr.press/v130/bosch21a/bosch21a.pdf}, + url = {http://proceedings.mlr.press/v130/bosch21a.html}, +} + +@article{tronarp20bayes, + author = {Tronarp, Filip and Särkkä, Simo and Hennig, Philipp}, + title = {Bayesian {ODE} solvers: the maximum a posteriori estimate}, + journal = {Statistics and Computing}, + year = 2021, + month = {Mar}, + day = 03, + volume = 31, + number = 3, + pages = 23, + issn = {1573-1375}, + doi = {10.1007/s11222-021-09993-7}, + url = {https://doi.org/10.1007/s11222-021-09993-7} +} + +@article{tronarp18probsol, + author = {Filip Tronarp and Hans Kersting and Simo Särkkä and Philipp + Hennig}, + title = {Probabilistic solutions to ordinary differential equations as + nonlinear {B}ayesian filtering: a new perspective}, + year = 2019, + volume = 29, + number = 6, + pages = {1297-1315}, + doi = {10.1007/s11222-019-09900-1}, + url = {https://doi.org/10.1007/s11222-019-09900-1}, + journal = {Statistics and Computing}, +} + +@article{kraemer20stableimplementation, + author = {Krämer, Nicholas and Hennig, Philipp}, + title = {Stable Implementation of Probabilistic {ODE} Solvers}, + journal = {CoRR}, + year = 2020, + url = {http://arxiv.org/abs/2012.10106v1}, + archivePrefix ={arXiv}, + eprint = {2012.10106}, + primaryClass = {stat.ML}, +} + +@article{kersting18convergencerates, + author = {Kersting, Hans and Sullivan, T. J. and Hennig, Philipp}, + title = {Convergence rates of {G}aussian {ODE} filters}, + journal = {Statistics and Computing}, + year = 2020, + month = {Nov}, + day = 01, + volume = 30, + number = 6, + pages = {1791-1816}, + issn = {1573-1375}, + doi = {10.1007/s11222-020-09972-4}, + url = {https://doi.org/10.1007/s11222-020-09972-4} +} + +@article{schober16probivp, + author = "Schober, Michael and Särkkä, Simo and Hennig, Philipp", + title = "A probabilistic model for the numerical solution of initial + value problems", + journal = "Statistics and Computing", + year = 2019, + month = "Jan", + day = 01, + volume = 29, + number = 1, + pages = "99--122", + issn = "1573-1375", + doi = "10.1007/s11222-017-9798-7", + url = "https://doi.org/10.1007/s11222-017-9798-7" +} + +@InProceedings{tronarp22fenrir, + title = {Fenrir: Physics-Enhanced Regression for Initial Value + Problems}, + author = {Tronarp, Filip and Bosch, Nathanael and Hennig, Philipp}, + booktitle = {Proceedings of the 39th International Conference on Machine + Learning}, + pages = {21776--21794}, + year = 2022, + editor = {Chaudhuri, Kamalika and Jegelka, Stefanie and Song, Le and + Szepesvari, Csaba and Niu, Gang and Sabato, Sivan}, + volume = 162, + series = {Proceedings of Machine Learning Research}, + month = {17--23 Jul}, + publisher = {PMLR}, + pdf = {https://proceedings.mlr.press/v162/tronarp22a/tronarp22a.pdf}, + url = {https://proceedings.mlr.press/v162/tronarp22a.html}, +} + +@inproceedings{kersting16active, + author = {Kersting, Hans and Hennig, Philipp}, + title = {Active Uncertainty Calibration in Bayesian ODE Solvers}, + year = 2016, + isbn = 9780996643115, + publisher = {AUAI Press}, + booktitle = {Proceedings of the Thirty-Second Conference on Uncertainty in + Artificial Intelligence}, + pages = {309–318}, + numpages = 10, + series = {UAI'16}, + url = {http://www.auai.org/uai2016/proceedings/papers/163.pdf}, +} + +@book{hennig22probnum, + place = {Cambridge}, + title = {Probabilistic Numerics: Computation as Machine Learning}, + DOI = {10.1017/9781316681411}, + publisher = {Cambridge University Press}, + author = {Hennig, Philipp and Osborne, Michael A. and Kersting, Hans P.}, + year = 2022, +} diff --git a/docs/src/solvers.md b/docs/src/solvers.md index 62eb5844c..3dc5abe00 100644 --- a/docs/src/solvers.md +++ b/docs/src/solvers.md @@ -21,4 +21,10 @@ RosenbrockExpEK ## [References](@id solversrefs) -[1] N. Bosch, F. Tronarp, P. Hennig: **Pick-and-Mix Information Operators for Probabilistic ODE Solvers** (2022) ([link](https://proceedings.mlr.press/v151/bosch22a.html)) + +```@bibliography +Pages = [] +Canonical = false + +bosch23expint +``` diff --git a/docs/src/tutorials/dae.md b/docs/src/tutorials/dae.md index 8152ef342..2e61e4cbf 100644 --- a/docs/src/tutorials/dae.md +++ b/docs/src/tutorials/dae.md @@ -136,4 +136,9 @@ So it seems that, even if the index-3 DAE could also be solved directly, index l ### References -[1] N. Bosch, F. Tronarp, P. Hennig: **Pick-and-Mix Information Operators for Probabilistic ODE Solvers** (2022) ([link](https://proceedings.mlr.press/v151/bosch22a.html)) +```@bibliography +Pages = [] +Canonical = false + +bosch22pickandmix +``` diff --git a/docs/src/tutorials/dynamical_odes.md b/docs/src/tutorials/dynamical_odes.md index 497dcbf07..b8f0655a9 100644 --- a/docs/src/tutorials/dynamical_odes.md +++ b/docs/src/tutorials/dynamical_odes.md @@ -85,7 +85,7 @@ plot(sol2, vars=(3, 4)) Solving second-order ODEs is not just a matter of convenience - in fact, SciMLBase's `SecondOrderODEProblem` is neatly designed in such a way that all the classic solvers from OrdinaryDiffEq.jl can handle it by solving the corresponding first-order ODE. But, transforming the ODE to first order increases the dimensionality of the problem, and comes therefore at increased computational cost; this also motivates [classic specialized solvers for second-order ODEs](https://diffeq.sciml.ai/stable/solvers/dynamical_solve/). -The probabilistic numerical solvers from ProbNumDiffEq.jl have the same internal state representation for first and second order ODEs; all that changes is the _measurement model_ [1]. +The probabilistic numerical solvers from ProbNumDiffEq.jl have the same internal state representation for first and second order ODEs; all that changes is the _measurement model_ [bosch22pickandmix](@citep). As a result, we can use the `EK1` both for first and second order ODEs, but it automatically specializes on the latter to provide a __2x performance boost__: ``` @@ -131,7 +131,7 @@ Let's fix this to get a physically more meaningful solution. ### Energy preservation with the `ManifoldUpdate` callback -In the language of ODE filters, preserving energy over time amounts to just another measurement model [1]. +In the language of ODE filters, preserving energy over time amounts to just another measurement model [bosch22pickandmix](@citep). The most convenient way of updating on this additional zero measurement with ProbNumDiffEq.jl is with the `ManifoldUpdate` callback. !!! note @@ -155,6 +155,12 @@ plot!(longsol_preserving.t, E.(longsol_preserving.u)) Voilà! With the `ManifoldUpdate` callback we could preserve the energy over time and obtain a more truthful probabilistic numerical long-term simulation of the Hénon-Heiles model. -#### References -[1] N. Bosch, F. Tronarp, P. Hennig: **Pick-and-Mix Information Operators for Probabilistic ODE Solvers** (2022) +### References + +```@bibliography +Pages = [] +Canonical = false + +bosch22pickandmix +``` diff --git a/docs/src/tutorials/exponential_integrators.md b/docs/src/tutorials/exponential_integrators.md index 033e43c04..b23059aa9 100644 --- a/docs/src/tutorials/exponential_integrators.md +++ b/docs/src/tutorials/exponential_integrators.md @@ -8,7 +8,7 @@ Exponential integrators are a class of numerical methods for solving semi-linear ``` where $L$ is a linear operator and $f$ is a nonlinear function. In a nutshell, exponential integrators solve the linear part of the ODE exactly, and only approximate the nonlinear part. -[Probabilistic exponential integrators](https://arxiv.org/abs/2305.14978) are the probabilistic numerics approach to exponential integrators. +[Probabilistic exponential integrators](@cite bosch23expint) [bosch23expint](@cite) are the probabilistic numerics approach to exponential integrators. ## Example @@ -92,4 +92,9 @@ plot!(sol_expek1, denseplot=false, marker=:o, markersize=2, label="EK1 + IOUP") ### References -[1] N. Bosch, P. Hennig, F. Tronarp: **Probabilistic Exponential Integrators** (2023) ([link](https://arxiv.org/abs/2305.14978)) +```@bibliography +Pages = [] +Canonical = false + +bosch23expint +``` diff --git a/docs/src/tutorials/fenrir.md b/docs/src/tutorials/fenrir.md index 6db123e6b..d4f11feca 100644 --- a/docs/src/tutorials/fenrir.md +++ b/docs/src/tutorials/fenrir.md @@ -71,7 +71,7 @@ nll ``` This is the negative marginal log-likelihood of the parameter `p_est`. You can use it as any other NLL: Optimize it to compute maximum-likelihood estimates or MAPs, or plug it into MCMC to sample from the posterior. -In [our paper](https://proceedings.mlr.press/v162/tronarp22a.html) we compute MLEs by pairing Fenrir with [Optimization.jl](http://optimization.sciml.ai/stable/) and [ForwardDiff.jl](https://juliadiff.org/ForwardDiff.jl/stable/). +In our paper [tronarp22fenrir](@cite) we compute MLEs by pairing Fenrir with [Optimization.jl](http://optimization.sciml.ai/stable/) and [ForwardDiff.jl](https://juliadiff.org/ForwardDiff.jl/stable/). Let's quickly explore how to do this next. @@ -115,6 +115,11 @@ plot!(mle_sol, color=3, label=["MLE-parameter Solution" ""]) Looks good! -#### Reference +### Reference -[1] F. Tronarp, N. Bosch, P. Hennig: **Fenrir: Fenrir: Physics-Enhanced Regression for Initial Value Problems** [(2022)](https://proceedings.mlr.press/v162/tronarp22a.html) +```@bibliography +Pages = [] +Canonical = false + +tronarp22fenrir +``` diff --git a/expdev.jl b/expdev.jl new file mode 100644 index 000000000..bef5ad92e --- /dev/null +++ b/expdev.jl @@ -0,0 +1,24 @@ +using ProbNumDiffEq, Plots, LinearAlgebra +theme(:default; palette=["#4063D8", "#389826", "#9558B2", "#CB3C33"]) + +f(du, u, p, t) = (@. du = -u + sin(u)) +u0 = [1.0] +tspan = (0.0, 20.0) +prob = ODEProblem(f, u0, tspan) + +ref = solve(prob, EK1(), abstol=1e-10, reltol=1e-10) + +STEPSIZE = 4 +DM = FixedDiffusion() # recommended for fixed steps + +sol_ek0 = solve(prob, EK0(prior=IOUP(3, -1), diffusionmodel=DM), adaptive=false, + dt=STEPSIZE) +sol_ekl = solve(prob, EK0(prior=IOUP(3, -1), diffusionmodel=DM), adaptive=false, + dt=STEPSIZE) +sol_ek1 = solve(prob, EK1(prior=IOUP(3, -1), diffusionmodel=DM), adaptive=false, + dt=STEPSIZE) + +plot(ref, color=:black, linestyle=:dash, label="Reference", ylims=(0.3, 1.05)) +plot!(sol_ek0, denseplot=false, marker=:o, markersize=2, label="EK0", color=1) +plot!(sol_ekl, denseplot=false, marker=:o, markersize=2, label="EKL", color=2) +plot!(sol_ek1, denseplot=false, marker=:o, markersize=2, label="EK1", color=3) diff --git a/src/algorithms.jl b/src/algorithms.jl index eb53e6251..efba620de 100644 --- a/src/algorithms.jl +++ b/src/algorithms.jl @@ -139,7 +139,7 @@ julia> solve(prob, ExpEK(L=-1)) # Reference -[1] N. Bosch, P. Hennig, F. Tronarp: **Probabilistic Exponential Integrators** (2023) ([link](https://arxiv.org/abs/2305.14978)) +* [bosch23expint](@cite) Bosch et al, "Probabilistic Exponential Integrators", arXiv (2021) """ ExpEK(; L, order=3, kwargs...) = EK0(; prior=IOUP(order, L), kwargs...) @@ -172,7 +172,7 @@ julia> solve(prob, RosenbrockExpEK()) ``` # Reference -[1] N. Bosch, P. Hennig, F. Tronarp: **Probabilistic Exponential Integrators** (2023) ([link](https://arxiv.org/abs/2305.14978)) +* [bosch23expint](@cite) Bosch et al, "Probabilistic Exponential Integrators", arXiv (2021) """ RosenbrockExpEK(; order=3, kwargs...) = EK1(; prior=IOUP(order, update_rate_parameter=true), kwargs...) diff --git a/src/diffusions.jl b/src/diffusions.jl index 46a43350d..d3a600214 100644 --- a/src/diffusions.jl +++ b/src/diffusions.jl @@ -35,7 +35,8 @@ a diagonal matrix is estimated. This can be helpful to get more expressive poste covariances when using the [`EK0`](@ref), since the individual dimensions can be adjusted separately. -See also [[1]](@ref diffusionrefs). +# References +* [bosch20capos](@cite) Bosch et al, "Calibrated Adaptive Probabilistic ODE Solvers", AISTATS (2021) """ struct DynamicMVDiffusion <: AbstractDynamicDiffusion end initial_diffusion(::DynamicMVDiffusion, d, q, Eltype) = @@ -100,7 +101,8 @@ a diagonal matrix is estimated. This can be helpful to get more expressive poste covariances when using the [`EK0`](@ref), since the individual dimensions can be adjusted separately. -See also [[1]](@ref diffusionrefs). +# References +* [bosch20capos](@cite) Bosch et al, "Calibrated Adaptive Probabilistic ODE Solvers", AISTATS (2021) """ Base.@kwdef struct FixedMVDiffusion{T} <: AbstractStaticDiffusion initial_diffusion::T = 1.0 @@ -149,7 +151,7 @@ Corresponds to where ``z, H, Q`` are taken from the passed integrator. For more background information -- N. Bosch, P. Hennig, F. Tronarp: **Calibrated Adaptive Probabilistic ODE Solvers** (2021) +* [bosch20capos](@cite) Bosch et al, "Calibrated Adaptive Probabilistic ODE Solvers", AISTATS (2021) """ function local_scalar_diffusion(cache) @unpack d, R, H, Qh, measurement, m_tmp, Smat = cache @@ -177,7 +179,7 @@ where ``z, H, Q`` are taken from the passed integrator. **This should only be used with the EK0!** For more background information -- N. Bosch, P. Hennig, F. Tronarp: **Calibrated Adaptive Probabilistic ODE Solvers** (2021) +* [bosch20capos](@cite) Bosch et al, "Calibrated Adaptive Probabilistic ODE Solvers", AISTATS (2021) """ function local_diagonal_diffusion(cache) @unpack d, q, H, Qh, measurement, m_tmp, tmp = cache diff --git a/src/initialization/common.jl b/src/initialization/common.jl index b9180e14e..8223b296e 100644 --- a/src/initialization/common.jl +++ b/src/initialization/common.jl @@ -16,7 +16,7 @@ given problem (typically because the problem definition does not allow for eleme `Taylor`). If this happens, try [`ClassicSolverInit`](@ref). # References -[[1]](@ref initrefs) N. Krämer, P. Hennig: **Stable Implementation of Probabilistic ODE Solvers** (2020) +* [kraemer20stableimplementation](@cite) Krämer et al, "Stable Implementation of Probabilistic ODE Solvers" (2020) """ struct TaylorModeInit <: InitializationScheme end @@ -41,8 +41,8 @@ optionally the second derivative can also be set via automatic differentiation b automatic differentiation with ForwardDiff.jl. # References -[[2]](@ref initrefs) M. Schober, S. Särkkä, and P. Hennig: **A Probabilistic Model for the Numerical Solution of Initial Value Problems** (2018) - +* [kraemer20stableimplementation](@cite) Krämer et al, "Stable Implementation of Probabilistic ODE Solvers" (2020) +* [schober16probivp](@cite) Schober et al, "A probabilistic model for the numerical solution of initial value problems", Statistics and Computing (2019) """ Base.@kwdef struct ClassicSolverInit{ALG} <: InitializationScheme alg::ALG = Tsit5()